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Analyst forecasts outperform econometric forecasts in the short run but underperform
in the long run. We decompose these differences in forecasting accuracy into analysts’
information advantage, forecast bias, and forecast noise. We find that noise and bias
strongly increase with forecast horizon, while analysts’ information advantage decays
rapidly. A noise increase with horizon generates a mechanical reversal in the sign of
the error-revision (Coibion-Gorodnichenko) regression coefficient at longer horizons,
independently of over-/underreaction. A parsimonious model with bounded rationality and
a noisy cognitive default matches the term structures of noise and bias jointly. (JEL G17,
G24, G40)
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Subjective forecasts can differ from rational expectations in three ways. First,
forecasters may have different information sets. Second, forecasts may be
biased, meaning that their forecast errors are predictable. Finally, forecasts can
be noisy, meaning that there is variation in forecasts that is unpredictable and
unrelated to the realization. While existing literature that studies expectation
formation has charactered many ways in which subjective forecasts are biased,
the objective of this paper is to quantify expectation noise and analyze its prop-
erties. Such expectation noise plays a central role in theoretical models of belief
formation (e.g., Sims 2003; Woodford 2003; Khaw, Li, and Woodford 2020;
Afrouzi et al. 2023), and is a pervasive feature of forecasting and human
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decision-making in many domains, such as medicine, finance, hiring, and
judicial decisions (Kahneman, Sibony, and Sunstein 2021).

The approach to quantifying noise in expectations that we develop in this
paper is motivated by a simple decomposition. As an illustration, we write
Fπ as the forecast of a variable π formed by a subjective forecaster, X as the
information set of an econometrician, and Z as the set of “soft” information
relevant for forecasting π unknown to the econometrician but possibly known
to the forecaster. Without loss of generality, we can write the subjective forecast
as

Fπ︸︷︷︸
subjective
forecast

= E(π |X)︸ ︷︷ ︸
econometric

forecast

+E(π |X,Z)−E(π |X)︸ ︷︷ ︸
soft information

+B(X,Z)︸ ︷︷ ︸
bias term

+ η︸︷︷︸
noise term

.

The bias term, B(X,Z)=E(Fπ −π |X,Z), is the predictable deviation from
rational expectations conditional on available information, which has been
studied extensively. The object of interest in this paper is the noise term,
η=Fπ −E(Fπ |X,Z), which comes on top of the bias, soft information,
and the rational component. Such noise can arise in rational models due
to noisy information (e.g., Woodford 2003) or in irrational models due to
cognitive noise (e.g., Afrouzi et al. 2023). Under mild assumptions discussed
in Section 2, the previous equation implies that the mean squared error (MSE)
of the subjective forecast can be written as:

MSE︸︷︷︸
subjective MSE

− MSEe︸ ︷︷ ︸
econometric MSE

=−E [E(π |X,Z)−E(π |X)]2︸ ︷︷ ︸
soft information

(1)

+E
[
B (X,Z)2

]︸ ︷︷ ︸
bias

+var(η),︸ ︷︷ ︸
noise

where MSEe is the econometric MSE. According to (1), the difference in MSE
between subjective forecasters and the econometrician can be decomposed into
three components: noise, bias, and the forecasters’ informational advantage.

Our goal in this paper is to separately estimate the three elements in (1),
with a particular focus on expectation noise, and examine what restrictions
they place on models of belief formation. To do so, we need to compare
subjective and econometric forecasts of the same variable. We use data on
forecasts of corporate earnings, which are convenient for two reasons. First,
the earnings forecasts issued by sell-side equity analysts, who are skilled and
incentivized forecasters, provide us with a large panel of subjective forecasts
across multiple forecasting horizons. Although the approach that we develop
to quantifying expectation noise is applicable to any data set on subjective
forecasts, this large panel of forecasts allows us to impose minimal restrictions
on the data generating process. Second, variation in earnings forecasts are
intrinsically relevant, as movements in cash flow expectations explain a
significant fraction, if not most, of the fluctuations in asset prices (Vuolteenaho
2002; De la O and Myers 2021; Bordalo et al. 2022).
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We begin our analysis by comparing the precision of subjective and
econometric forecasts, which corresponds to the left-hand side of (1). To
form the econometric forecasts, we explore several well-known supervised
machine learning (ML) estimators with over 200 predictors from past financial
statements and stock prices. When we compare these forecasts to those of
equity analysts, we uncover a term structure of forecasting accuracy: subjective
forecasts dominate econometric forecasts at short forecasting horizons (one,
two, three, and four quarters and one year) but underperform our econometric
forecasts at long horizons (2, 3, and 4 years).

As illustrated in (1), the relative performance of subjective and econometric
forecasts depends on three terms: differences in information, forecast bias, and
expectation noise. Thus, our finding that the relative accuracy of these two
forecasts varies with the forecasting horizon implies that one (or more) of
these three terms must vary across horizons. For example, subjective forecasts
may be more accurate at short horizons because of information gathered from
discussions with management that is not incorporated in our econometric
forecasts. Alternatively, subjective forecasts might be less accurate at long
horizons because of greater forecast bias from cognitive mistakes (e.g.,
extrapolation).

We next turn to developing a quantitative framework that allows us to
separately identify each of the three terms on the right of (1): soft information,
bias, and noise. In contrast to most of the extant literature, our framework
places no restrictions on the data-generating process (DGP). Our approach
does rely on three key assumptions about the structure of the belief formation
process, which we show are satisfied in commonly used models of belief
formation, such as noisy information (Woodford 2003), sticky expectations
(Mankiw and Reis 2002), and diagnostic expectations (Bordalo et al. 2016).
These assumptions are necessary for identification because the information
set of forecasters is unobservable. Nevertheless, our framework is flexible as
it allows for classic deviations from full-information rational expectations:
(a) bias on in public information, (b) soft information observed by the
forecaster, (c) bias on soft information, and (d) expectation noise.

We show how to use this framework to estimate the contribution of these
four components to the forecast accuracy separately at different forecasting
horizons using an intuitive set of moment conditions. We estimate that at short
forecasting horizons (fewer than 2 years), the soft information component is
an order of magnitude larger than the bias and noise terms: the size of the
bias and noise combined is only approximately 10–20% of the size of the soft
information component. This is consistent with the fact that subjective forecasts
dominate econometric forecasts at short horizons. However, when we look at
longer horizons, we uncover an upward-sloping term structure of the noise and
bias components. For example, at a forecasting horizon of 3 years, expectation
noise increases by a factor of three to approximately 70% of the size of the soft
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information component. Bias increases by a factor of two. Thus, the upward-
sloping term structure of noise and bias is what explains the decay in accuracy
of subjective forecasts at longer horizons.

To illustrate the quantitative importance of expectation noise to forecast
accuracy, we explore two implications. First, we show that noise makes the
Coibion and Gorodnichenko (2015) (CG) regression coefficient a misleading
measure of overreaction at longer horizons. Consistent with existing literature,
the CG coefficient in our analyst forecast data is positive at short horizons and
negative at longer ones. Traditionally, the literature interprets this as evidence
of short-term underreaction and long-term overreaction. We show that this
interpretation is misleading because noise biases the CG coefficient toward
negative values even when forecasts are underreacting. To do this, we use
our estimation to compute the CG coefficient in a counterfactual world where
forecasts have no noise. We find that this counterfactual CG coefficient is
positive and increasing with the horizon, suggesting greater underreaction at
long horizons. This discrepancy comes from the upward-sloping term structure
of the noise term: at long horizons, noise is larger, making the CG coefficient
negative in spite of underreaction in observed forecasts.

The second implication of the upward-sloping term structure of noise
is its effect on the complementarity between statistical and subjective
forecasts. We find that even at long horizons, subjective forecasts contain
substantial soft information. Thus, we can improve forecasting performance
by forming “augmented” forecasts: that is, we augment the information set of
econometric forecasts to include subjective forecasts. However, noise weakens
this complementarity because it makes it harder to extract the soft information
embedded in statistical forecasts: augmented forecasts optimally underweight
noisy forecasts, thus extracting less soft information. The upward-sloping
term structure of noise implies, then, that these augmented forecasts should
provide little improvement relative to our benchmark econometric forecasts at
long horizons. We show that this is the case in our setting: human is a good
complement of machine in the short run, but not in the long run.

In the final part of the paper, we examine which models of belief
formation can jointly match the term structures of expectation noise
and bias that we estimate. We first revisit several canonical models,
including models of noisy information (Woodford 2003), bounded rational-
ity (Sims 2003), diagnostic expectations (Bordalo et al. 2020), overconfi-
dence (Daniel, Subrahmanyam, and Hirshleifer 1998), and overextrapolation
(Greenwood and Shleifer 2014; Angeletos, Huo, and Sastry 2020). In their
standard formulations, these models all predict downward-sloping term
structures for both bias and noise. This is because these models rely on the
law of iterated expectations to determine the term structure of forecasts: since
forecasters know the true data generating process, their forecasts shrink toward
the unconditional mean at longer horizons. In other words, forecasters in
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standard expectations models are more rational at longer horizons, which is
at odds with our evidence that bias and noise increase with the horizon.

Motivated by the failure of these models, we deviate by exploring a variant of
the model from Patton and Timmermann (2010) that has two key components.
The first is that forecasters exhibit a form of bounded rationality in the spirit
of Gabaix (2014). Specifically, forecasts are a weighted sum of a cognitive
default and the true conditional expectation, with less weight on the former as
the latter becomes more accurate. Following Patton and Timmermann (2010),
we assume but do not microfound this dependence. The second key ingredient
is the cognitive default that may contain bias and noise. The model is
parsimonious and relies mostly on two key horizon-invariant parameters: one
that controls the sensitivity of the weight on the cognitive default to the
precision of rational forecasts and one that captures the quantity of expectation
noise in the cognitive default.

We estimate the parameters of this model by targeting the term structures of
bias and noise that we previously identified. The estimated noise in cognitive
defaults is approximately the same as the variation in the true data generating
process, which allows us to match the large average level of noise in the data.
Our ability to match the upward slope of the bias and noise term structures
is driven by the form of bounded rationality that is present in the model:
forecasters rely more on their cognitive defaults at longer horizons because
the true conditional expectation is less accurate in absolute terms. Although
our model has only one parameter that jointly controls the slope of all term
structures, we find that it matches them quite well. This finding suggests that
the underlying mechanisms generating bias and noise are linked, echoing the
findings of Enke and Graeber (2023).

Given that bounded rationality is a crucial ingredient for this model to
fit the data, we conclude by exploring how noise varies cross-sectionally
with the volatility of the underlying process. Our model yields the qualitative
prediction that noise should increase in volatility, which we show is true
empirically. However, our model can replicate this relationship reasonably well
quantitatively even though it is estimated entirely using across-horizon rather
than cross-sectional moments.

Subjective forecast noise is discussed in the large literature on noisy
information (e.g., Woodford 2003; Coibion and Gorodnichenko 2015) and to
a lesser extent in behavioral economics (e.g., Khaw, Li, and Woodford 2020;
Woodford 2020; Enke and Graeber 2023; Kahneman, Sibony, and Sunstein
2021; Afrouzi et al. 2023). Our contribution to this literature is twofold: (1) we
offer evidence on the size and term structure of noise using analyst forecast
data and (2) our methodology places no restrictions on the data generating
process. Our methodology is similar in spirit to that of Satopää et al. (2020),
who perform a bias-information-noise (“BIN”) decomposition and find that a
consistent property of good subjective forecasters is noise reduction, and is
complementary to the approach developed by Juodis and Kucinskas (2023),
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which exploits the factor structure in expectations implied by many
models of belief formation. More broadly, our approach is related to
Bianchi, Ludvigson, and Ma (2022) and Nagel (2021), who discuss how
supervised learning is useful for studying subjective expectations data.

Our work also connects to the extant empirical literature on expecta-
tion formation. This literature generally focuses on estimating forecaster
bias (e.g., Manski 2017) and forecaster information disadvantage (e.g.,
Coibion and Gorodnichenko 2015). In contrast, we measure two additional
components: subjective forecasters’ information advantage and noise. We
further document the term structure of these components and explore a
modeling assumption—reliance on a noisy default—that allows our model
to fit the data. Our finding of an upward-sloping term structure of noise
is, to our knowledge, novel. Patton and Timmermann (2010) document that
disagreement in macro forecasts increases with the horizon, which is consistent
with this observation. Additionally, this upward-sloping term structure of
noise provides support for theories of discounting based on horizon-increasing
misperception rather than a fundamental time preference (Gabaix and Laibson
2017), which have received experimental support (Gershman and Bhui 2020).

Our finding of an upward-sloping term structure of forecaster bias is
consistent with existing evidence from asset prices and other expecta-
tions data (Giglio and Kelly 2018; Bordalo et al. 2019; D’Arienzo 2020;
Angeletos, Huo, and Sastry 2020). A common empirical finding in this
literature is more overreaction at long horizons, which our decomposition of
the Coibion and Gorodnichenko (2015) coefficient shows is likely influenced
by the presence of expectation noise. Closely related evidence is presented
in Dessaint, Foucault, and Frésard (forthcoming), who show that long-term
forecasts are less predictive of future earnings realization. This is consistent
with long-term forecasts being more biased, noisier, or less informed, and our
decomposition clarifies this without making assumptions about the true DGP.
Complementary evidence is also presented in Cassella et al. (2023), who, like
us, analyze the term structure of analyst expectations. They study variations in
the long-term optimism of analysts and relate it to movements in the equity risk
premium. Our analysis instead focuses on the unconditional term structures of
bias and noise, both of which are found to be upward sloping once one filters
out private information. We also propose a model in which noise and bias are
linked and their time structure is pinned down by a single attention parameter.

Because we estimate statistical forecasts, our paper also engages
with the recent literature applying supervised machine learning in eco-
nomics and finance (see Mullainathan and Spiess 2017, for a review).
To perform our decomposition, we study the predictability of corpo-
rate earnings at various horizons using firm-level observables and stan-
dard ML estimators. So (2013) proposes a parsimonious regression
model to forecast earnings per share (EPS), upon which multiple recent
papers have expanded by applying ML techniques (see Ball and Ghysels
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2018; van Binsbergen, Han, and Lopez-Lira 2022; Hansen and Thimsen 2020;
Cao and You 2020). Like these papers, and like papers implementing a
similar exercise on equity returns directly (e.g., Gu, Kelly, and Xiu 2020;
Kozak, Nagel, and Santosh 2020; Bryzgalova, Huang, and Julliard 2023), we
find that gains can be achieved from using supervised ML techniques over
nonregularized estimators. Another outcome of our analysis is that tree-based
forecasts marginally dominate penalized methods—this is also consistent with
the literature on EPS forecasting.

Finally, our paper is related to the extensive literature on analyst forecasts
(see Kothari, So, and Verdi 2016, for a review). Our finding that analyst
forecasts are more accurate at a horizon of less than a year is broadly consistent
with results in this literature (e.g., Brown and Rozeff 1978; Bradshaw et al.
2012), and our estimate of a large soft information component corroborates
the survey evidence in Brown et al. (2015). Our proposed model features a
form of bounded rationality, consistent with evidence that attention constraints
shape analyst behavior by affecting effort allocation (Harford et al. 2019) and
inducing social learning (Kumar, Rantala, and Xu 2021).

1. The Term Structure of Forecasting Accuracy

1.1 Data description
The data used in this paper come from three sources: I/B/E/S, Compustat,
and the Center for Research in Security Prices (CRSP). We start by collecting
the reported fiscal year-end (FY) EPS and the respective announcement dates
from the I/B/E/S actuals file for all US firms with announcements between
1989 and 2021. For each FY denoted as t , we collect all analyst EPS forecasts
from the I/B/E/S detailed file issued within 45 calendar days of the release
of the FY annual report.1 We focus on this 45-day period to ensure that our
subjective forecasts are taken with similar information sets across analysts (as
in Bouchaud et al. 2019). We focus on issued forecast to ensure that they are
not mechanically stale, in the sense that analysts actively published them during
this period. We use all available quarterly forecasts and all annual forecasts
excluding the 5-year-ahead forecasts (because of a lack of observations). When
analysts issue multiple forecasts, we keep only their earliest forecasts.

We write forecasting horizons as h, where h∈{1,2,3,4} denotes annual
forecasts and h∈{0.25,0.5,0.75,1∗} quarterly forecasts. For each forecasting
horizon, we collect the corresponding EPS realization from the I/B/E/S actuals
file. We then normalize both forecasts and realizations by the stock price
from CRSP on the day of the fiscal year-end.2 We write the realizations of
this earnings-to-price ratio for firm i at time t +h as πit+h = EPSit+h

Pit
and the

1 Our results are robust to our using a 30-day window instead of a 45-day window.

2 We work with earnings-to-price ratios instead of EPS levels because this variable has substantially fewer outliers.
Our results are robust to our using EPS levels.
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corresponding forecasts by F
j
t πit+h = FjtEPSit+h

Pit
, where j indexes analysts and

FjtEPSit+h is the forecast at horizon h of analyst j . Thus, we normalize both
forecasts and eventual realizations, at all horizons, by the same price Pit .

Next, we collect a large set of financial ratios from the financial ratios
provided by Wharton Research Data Services (WRDS). We also collect several
variables from Compustat, CRSP, and I/B/E/S. Xit denotes the set of these
variables, all of which are listed in Table A1 in the Internet Appendix. Each of
these variables is calculated from information available upon the release of the
fiscal year-end in year t for firm i. Finally, we impose several sample filters:
we delete all observations for securities that are not ordinary equity securities
(CRSP share codes 10 and 11), winsorize EPS forecasts and EPS realizations at
10 times their interquartile range to eliminate outliers, and drop a small number
of observations for which the forecast errors are extremely large, which are
likely data errors.

In Table 1, we show several summary statistics on the set of firm-year-
analyst observations in our sample. Panel A shows the average forecast error
across the four quarterly and four annual horizons that we examine. Looking at
the mean forecast error across horizons, we already see evidence of an upward-
sloping term structure of forecast bias: the forecasts exceed the realizations on
average, and this difference increases with the forecasting horizon. In panel B,
we show summary statistics on the set of firm-years that are in our sample at
each forecasting horizon. For all quarterly, 1-year-, and 2-year-ahead forecasts,
we observe approximately 4–5 distinct analyst forecasts per firm. Coverage
drops after that, in terms of both the total number of forecasts and the number
of forecasts per firm. In terms of size, the firms at these different horizons
appear relatively similar. However, at the two longest forecast horizons, 3- and
4-year-ahead forecasts, we have distinct firms and forecasts per firm. This is
because far fewer forecasts are available in I/B/E/S at these longer horizons.
As expected, in terms of size, the firms for which we have forecasts at longer
horizons tend to be larger.

1.2 Forecast formation
First, we calculate consensus analyst forecasts, which we denote by Ftπit+h.
We calculate consensus forecasts by taking an equally weighted average of the
analyst forecasts that we have in our sample for each firm-year in Table 1.

Next, we turn to the formation of our statistical (or “econometric”) forecasts,
which we denote by Fe

t πit+h. Given a set of public information Xit , our
goal is to approximate the conditional expectation function, E(πit+h|Xit ), as
accurately as possible. As is well known, E(πit+h|Xit ) is the solution to the
problem of minimizing the mean squared error across all possible (measurable)
functions of Xit :

Et (πit+h|Xit )=argmin
h(Xit )

E
[
(πit+h−h(Xit ))

2
]
. (2)
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Table 1
Summary statistics

Count Mean SD 10% 25% 50% 75% 90%

A. Analysts’ forecasts

πh=0.25
it+h

−F
j
t πh=0.25

it+h
358,299 0 0.005 −0.004 −0.001 0 0.002 0.005

πh=0.5
it+h

−F
j
t πh=0.5

it+h
311,253 −0 0.008 −0.007 −0.002 0 0.002 0.006

πh=0.75
it+h

−F
j
t πh=0.75

it+h
305,763 −0.001 0.010 −0.010 −0.003 0 0.002 0.006

πh=1∗
it+h

−F
j
t πh=1∗

it+h
305,844 −0.002 0.012 −0.014 −0.004 −0 0.002 0.006

πh=1
it+h

−F
j
t πh=1

it+h
388,895 −0.004 0.031 −0.033 −0.009 0 0.005 0.017

πh=2
it+h

−F
j
t πh=2

it+h
308,682 −0.012 0.052 −0.062 −0.022 −0.003 0.006 0.023

πh=3
it+h

−F
j
t πh=3

it+h
51,722 −0.018 0.072 −0.087 −0.035 −0.006 0.007 0.032

πh=4
it+h

−F
j
t πh=4

it+h
12,816 −0.037 0.110 −0.142 −0.059 −0.013 0.006 0.033

B. Firm-level variables
Nh=0.25

it
75,970 4.790 4.309 1 2 3 6 10

Total Assetsh=0.25
it

75,970 9.605 68.532 0.077 0.217 0.834 3.305 12.880
Nh=0.5

it
70,250 4.489 4.166 1 2 3 6 10

Total Assetsh=0.5
it

70,250 10.151 70.751 0.080 0.229 0.879 3.494 13.744
Nh=0.75

it
68,858 4.489 4.154 1 2 3 6 10

Total Assetsh=0.75
it

68,858 10.281 71.711 0.081 0.232 0.891 3.546 13.882

Nh=1∗
it

66,983 4.610 4.242 1 2 3 6 10

Total Assetsh=1∗
it

66,983 10.372 72.149 0.082 0.236 0.917 3.671 14.190
Nh=1

it
75,782 5.189 4.863 1 2 4 7 12

Total Assetsh=1
it

75,782 9.478 68.437 0.068 0.202 0.794 3.200 12.505
Nh=2

it
64,241 4.839 4.421 1 2 3 6 11

Total Assetsh=2
it

64,241 10.134 69.989 0.081 0.240 0.924 3.617 13.838
Nh=3

it
20,660 2.518 2.173 1 1 2 3 5

Total Assetsh=3
it

20,660 20.607 109.421 0.163 0.614 2.470 9.321 32.884
Nh=4

it
7,936 1.630 1.302 1 1 1 2 3

Total Assetsh=4
it

7,936 23.471 110.206 0.131 0.533 2.964 13.999 44.208

This table shows summary statistics on our final sample, which we construct as described in Section 1.1. In
panel A, we show summary statistics for forecast errors at the firm-year-analyst level for our different forecasting
horizons. Panel B shows summary statistics at the firm-year level of the number of distinct analysts, Nit , and the
total assets in $ millions.

In practice, solving (2) is infeasible because it requires searching over
an infinite-dimensional function space. To gain tractability, we leverage
supervised machine learning approaches that restrict h(Xit ) to be within a
particular class of functions, such as linear functions, and use different forms
of regularization developed in supervised machine learning to address the high
dimensionality of the set of variables in Xit .

The first step is to decide what variables constitute Xit . To form Xit ,
we use all the variables listed in Table A1, which consist of a large set of
commonly used financial ratios, industry indicator variables, and past stock
price information. We use these variables for fiscal year t and from the prior
two annual (or quarterly) reports to capture potential lead-lag relationships,
resulting in a set of over 200 predictor variables. Our logic for choosing
these variables is not that we think that they represent the exhaustive set of
information relevant for forecasting earnings at the firm level. Instead, we view
these items as a large set of variables that are easily observable and likely used
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by analysts. Importantly, since the econometrician is forecasting πit+h with Xit ,
she needs to wait until after the release of the fiscal year report in year t before
forming her forecasts. This econometric forecast therefore can be thought of as
being issued at the same calendar time as the analyst forecasts that we collect
from I/B/E/S.

To solve the sample counterpart to (2), we next need to define the training
sample. To avoid look-ahead bias, we use rolling windows of 5 years to train
the various statistical forecasting models, with the exception of the 3- and
4-year-ahead forecasts.3 This period is chosen to maximize the size of the
training set subject to computational constraints.4 Additionally, by choosing
a rolling window, we implicitly allow for low-frequency changes in the data
generating process for earnings over time. More precisely, for each date t , we
use all firm-year observations (i,s) in years s ∈{t −4,t −3,...,t} to forecast
at πit+h for our eight forecasting horizons, h∈{0.25,0.5,...,1,...,4}. Given
forecasting variables Xis , our estimation consists of finding the function that
has the minimum MSE in explaining in-sample future πi,s+h, using the various
regularization techniques described below. We refer to this estimated function
as our econometric forecast and denote it by Fe

t πit+h.
Figure 1 provides a timeline to clarify the relative timing of our data

collection, analyst forecasts, and econometric forecasts. Consider a firm with
an annual fiscal year-end at t and that releases its annual report at tR (typically
30–45 calendar days after t). The data that we use to form our econometric
forecasts are realized at t , t −1h, and t −2h. Thus, these econometric forecasts
are “current” at the time of tR , when this information is made public. We then
collect analyst forecasts over the 45 days following tR so that these forecasts
are not stale and are made with access to the information set Xit upon which
our econometric forecasts are based.5

Finally, we describe the supervised learning techniques that we use to
estimate the forecasting function that solves (2), Fe

t . We opt not to use
ordinary least squares (OLS) because our goal is to approximate conditional
expectation functions, so we would like to impose minimal functional form
restrictions. If Xit were low dimensional, we could in principle use OLS, but
since Xit is not low dimensional, OLS is inconsistent and unstable because
of its tendency to overfit. Thus, we turn to supervised learning techniques,

3 Because of the lower number of observations for h=3 and h=4, we use an expanding window in which past data
accumulate and are never dropped from the training set for future years.

4 To check that our conclusions are not sensitive to our choice of a 5-year window, we run one of our
estimators (gradient-boosted trees) using a growing window, where all past data are used (this exercise is
too computationally challenging for our penalized linear estimators, as we include many interactions in those
estimations). We find that the MSE of the econometric forecast declines only by 2.0% and that the econometrician
+ analyst forecast MSE increases by 0.6%.

5 This selection effect tends to attenuate our headline results. This is because smaller firms have a more pronounced
term structure of bias and noise (they increase more with horizon) than large firms. We provide illustrative
evidence of this in Internet Appendix Figure A1, where we split the sample into firms with above and below
median assets.
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Figure 1
Timeline of forecast formation
This figure provides a timeline of the formation of our forecasts of πit+h. t denotes the fiscal year-end, while tR
denotes the release of the fiscal year-end report. t +h denotes the time at which the realization, πit+h, is realized.

which restrict the spaces of possible functions in (2) to be tractable yet flexible
while simultaneously minimizing the risk of overfitting using various forms
of regularization. The following is a brief presentation of our approach; we
refer the reader to Internet Appendix C for more discussion on the theoretical
properties of these estimators and our implementation.

Random walk. As a benchmark, we consider a random walk forecast where
Fe

t πit+h =EPSit ∀h. Although this will be our worst-performing forecast,
it is a benchmark commonly used in literature on analyst forecasts (e.g.,
Bradshaw et al. 2012).

Elastic net. The first supervised learning estimator that we consider is
elastic net. This estimator, which is a penalized linear estimator, is defined
by the solution to the same objective function that OLS solves (minimizing
the in-sample mean squared error), but with an additional penalty term on
the size of the coefficients, where the size of the penalty is chosen via cross-
validation on the training set (detailed in Internet Appendix C). Intuitively, the
cross-validation consists of breaking up the training sample into smaller data
sets, fitting models on these smaller data sets, and examining which penalty
value generates the best performance on the other parts of the training set.
Importantly, the cross-validation is done entirely on the training set to avoid
introducing any look-ahead bias.6

Random forest. The second estimator that we consider is random forest
(RF), which is a nonparametric tree-based method. The building block of tree-
based estimators is regression trees, which are designed to capture arbitrary
nonlinearities among the variables in Xit . Used alone, regression trees have a
tendency to overfit, which has led to the development of various “ensemble”
methods that introduce forms of regularization. RF is a particular ensemble
method constructed on the basis of the intuition of bootstrapping. On each
bootstrapped sample, a regression tree is grown. After doing this multiple
times, we calculate final predictions from the RF by averaging predictions
across the multiple regression trees. This averaging across many trees with
different structures arising from the randomness in the subset of predictor

6 We explore other penalized linear estimators, such as lasso, ridge, post-lasso (Chernozhukov et al. 2016), and
iterative lasso (Belloni, Chernozhukov, and Hansen 2011), all of which give nearly identical results. We choose
to omit them for brevity.
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variables chosen is the regularization in this method that limits overfitting and
reduces prediction variance. As in the case of penalized linear estimators, the
parameters that govern the shape of the regression trees can be chosen by means
of cross-validation on the training set.

Gradient-boosted trees. The gradient-boosted trees (GBT) method is a
second tree-based ensemble method based on the same core idea as that behind
RF: to grow a large number of uncorrelated trees and then average their
predictions. GBT starts by fitting a very shallow tree, meaning that only a
small number of variables are used. This shallow tree likely has terrible in-
sample fit. To improve its fit, we fit a second shallow tree to the residuals
calculated from the first tree. Predicted values are then formed by using a
weighted average of the predicted values from the two trees. This procedure is
repeated many times, after which the predicted value will be a weighted average
of the predicted value from all the shallow trees. The sequential growing of
trees on the residuals from previous trees makes the trees less correlated, which
is why averaging over trees limits overfitting. As with the other methods, the
parameters governing the size of these shallow trees and the weights in the
weighted average are chosen through cross-validation on the training set.

1.3 Forecasting results
We now compare the relative accuracy of our analyst and econometric forecasts
discussed in Section 1.2. We present the out-of-sample mean squared errors of
all of our forecasts across the entire sample, normalized by the mean squared
realization of realized profits πit+h. This normalization can be interpreted as
the allocative efficiency loss with respect to a perfect foresight optimizer. We
discuss this model formally in Internet Appendix D.

Table 2 shows the normalized MSE for our eight forecasting horizons.7

Focusing first on analyst forecasts, we observe in the first column that they
are very accurate at short horizons. For example, for one-quarter forecasts,
analyst forecasts generate only a 4% loss in utility relative to a perfect foresight
optimizer. This is consistent with the fact that near-term analyst forecasts
are heavily influenced by discussions with management and hence are well
informed.8 As the forecasting horizon increases, Table 2 shows that the relative
accuracy of analyst forecasts monotonically declines. At a 4-year forecast

7 The decline in MSE levels between the four-quarter-ahead and 1-year-ahead forecasts comes from the fact that
the quarterly forecasts are for each individual quarter. The 1-year-ahead MSE should instead be compared to the
average of the four quarterly MSEs, to which it is similar.

8 Another possibility is that our econometric forecasts are stale relative to analyst forecasts. Although our results
are quantitatively similar when we use a 30-day instead of a 45-day window, Table A2 in the Internet Appendix

presents results for quarterly forecasts where an additional predictor variable is added:
EPSit

PitR+45
. We thank an

anonymous referee for this suggestion. The results show that even with this additional predictor, which contains
more timely information from the current stock price, the relative accuracy of analyst forecasts at short horizons
remains.
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Table 2
The term structure of forecasting accuracy: Analyst versus econometrician forecasts

MSEa
h

MSEe
h

Horizon: h Analyst Random Walk Elastic Net Random Forest Boosted Trees

1 Quarters 4.6% 26.1% 20.81% 15.52% 17.25%
(23.2) (20.19) (17.35) (18.12)

2 Quarters 8.43% 30.0% 19.61% 15.26% 16.91%
(22.13) (17.95) (14.43) (15.07)

3 Quarters 13.05% 33.87% 22.05% 17.87% 19.28%
(18.72) (18.8) (12.5) (14.14)

4 Quarters 18.71% 24.92% 25.34% 21.55% 22.45%
(8.59) (11.83) (5.89) (6.63)

1 Years 9.9% 18.67% 18.63% 15.78% 16.52%
(12.28) (15.81) (12.31) (12.14)

2 Years 29.19% 34.27% 30.21% 27.05% 29.28%
(4.03) (1.04) (−2.13) (0.08)

3 Years 33.32% 35.11% 29.11% 26.32% 27.96%
(1.79) (−5.09) (−8.95) (−6.1)

4 Years 46.41% 37.26% 27.86% 25.76% 29.3%
(−6.43) (−14.15) (−15.7) (−12.94)

This table contains the mean squared error of analyst forecasts in the first column, denoted as MSEa
h

, and of our
econometric forecasts, denoted as MSEe

h
, across different forecasting horizons for forecasts of earnings yields,

πit+h. The numbers reported in the table are normalized by the mean realization of π2
it+h

at each horizon. In
parentheses, we report Diebold-Marino (DM) test statistics for testing the relative accuracy of the two forecasts
under a squared loss function, where the asymptotic variance is calculated by performing a bootstrap at the year
level with 1,000 iterations.

horizon, we see that the normalized MSE is 10 times as large as that for
one-quarter forecasts.

The remaining four columns of Table 2 show the results from our
econometric forecasts, which are formed with four different methods, in
addition to Diebold-Marino test statistics for the relative accuracy of the
analyst to econometric forecasts under a squared loss function. The first
takeaway from these columns is that there are gains to using both more
information and less parametric supervised learning methods to forecast
earnings. Comparing the second and third columns, we see that elastic net
outperforms the random walk forecasts by a larger margin at short horizons
and a smaller margin at longer horizons. The final two columns show that tree-
based methods perform even better at all horizons, generating an approximately
10%–20% improvement relative to elastic net. These findings are consistent
with existing literature on forecasting firm-level EPS (Ball and Ghysels
2018; van Binsbergen, Han, and Lopez-Lira 2022; Hansen and Thimsen 2020;
Cao and You 2020), which finds that more sophisticated estimators improve the
quality of short-term predictions. Here, we find this to be the case at not only
shorter but also longer horizons.

The second and more important takeaway from these columns is that
analyst forecasts dominate all econometric forecasts at forecast horizons of
less than 1 year (the DM statistics reject the null at the 1% critical values).
This is especially true at the one-quarter and two-quarter horizons, where the
difference is extremely large: our best econometric forecast (random forest)
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generates a utility loss of approximately 15% relative to perfect foresight,
which is some 2–3 times greater than the loss associated with analyst forecasts.
However, we find that at longer horizons of 2, 3, and 4 years, our best
econometric forecast (random forest) outperforms analyst forecasts. At 3- and
4-year horizons, this difference is substantial: random forest generates a gain
in MSE relative to analyst forecasts of approximately 10–20 pp (33%–45%).

Finally, the evidence in Table 2 speaks to a growing literature that compares
the relative accuracy of supervised learning estimators designed to perform
well under (approximate) sparsity conditions (i.e., variants of lasso and elastic
net) to nonsparse or less-parametric estimators (e.g., ridge regression, tree-
based estimators). Our finding that tree-based methods outperform elastic
net suggests that the true data generating process may not be very sparse.
This is consistent with recent evidence in empirical asset pricing that
sparse approximations to stochastic discount factors (Gu, Kelly, and Xiu 2020;
Kozak, Nagel, and Santosh 2020; Bryzgalova, Huang, and Julliard 2023) per-
form poorly, but contrasts with the strong performance of sparse estimators in
forecasting macro aggregates (Bianchi, Ludvigson, and Ma 2022).

In sum, this section documents a term structure of forecasting accuracy:
subjective forecasts are more accurate than statistical forecasts at short
horizons, but their accuracy decays in the long-run. In principle, this reduction
in relative subjective forecast accuracy could occur for two reasons. First,
subjective forecasters could have access to less soft information at longer
horizons. For example, analysts may receive strong signals from discussions
with management about a firm’s near-term prospects or use high-frequency
data sources (Dessaint, Foucault, and Frésard forthcoming), which might be
less valuable (in terms of forecasting MSE) at longer horizons. Secondly,
analysts may issue more biased or noisier forecasts at longer horizons, possibly
driven by weaker incentives, a greater tendency to engage in cognitive mistakes
(e.g., extrapolation), or a greater cost of processing public information.
Quantifying these competing explanations requires a quantitative framework,
which we develop and estimate in the next section.

2. Decomposing the Term Structure of Subjective Forecasts

2.1 Framework
2.1.1 MSE decomposition We write πi =πit+h as the state variable that we
seek to forecast (the data generating process or DGP), which is the earnings-
to-price ratio of firm i realized at t +h. Throughout this section, we suppress the
indices t and h to lighten the notation, as our analysis imposes no restrictions
across t or h. We decompose the available information into two groups:
what is observable to the econometrician and the rest.9 First, we write public

9 Throughout, we use the term “information set” to informally refer to a sub-σ -algebra on the probability space
over which πi is defined.
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information observed by the econometrician as Xi , which we assume includes
a constant. In our empirical analysis, this corresponds to the set of variables
in Table A1. Second, Zi denotes the second information set that is unobserved
to the econometrician and possibly observed by analysts. It may or may not
intersect with Xi . It may not be relevant to forecast πi or alternatively may be
completely subsumed by Xi .

We first break down the DGP into three information sources: public, soft and
residual. The decomposition is described below.

Lemma 1. For any information structure Xi and Zi , we can decompose the
DGP πi as:

πi =xi +zi +εi,

where

• xi ≡E (πi |Xi) is the component observable to the econometrician,
• zi ≡E (πi |Xi,Zi)−E (πi |Xi) is the soft information component, for

which E (zi |xi)=0, and
• εi ≡πi −E (πi |Xi,Zi) is the unpredictable residual, for which

E (εi |xi,zi)=0.

Appendix A provides all derivations. Note that this decomposition does
not make any assumption about the degree of overlap of Xi and Zi . It may
even be the case that some parts of Zi are not relevant to forecast πi . If all
of Zi is irrelevant, zi =0. Lemma 1 states that, without loss of generality, we
can decompose πit+h into a part that depends on public information, xi , an
orthogonal part that depends on public and nonpublic information, zi , and
an innovation relative to both information sets, εi . If there is no nonpublic
information (i.e., Zi ⊆Xi), then zi =0. For this reason, we refer to zi as soft
information: it captures the extent to which rational forecasts of πi change
when conditioning on Zi in addition to Xi .

Forecasts of the DGP πi are made by forecasters indexed by j , which we
denote by Fjπi . Using the terms defined in Lemma 1, we similarly decompose
subjective forecasts, without loss of generality on the information structure Xi

and Zi :

Lemma 2. For any information structure Xi and Zi , we can decompose the
forecast Fjπi as:

Fjπi =xi +zi +bij +ηij , (3)

where

• bij =E
(
Fjπi −πi |Xi,Zi

)
is the analyst bias and

• ηij =Fjπi −E
(
Fjπi |Xi,Zi

)
is the analyst noise, for which

E
(
ηij

∣∣xi,zi

)
=0.
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Equation (3) is the equation described in the introduction, which breaks
subjective expectations into three parts. The first is the rational expectation
given Xi and Zi , which is xi +zi . The second term captures forecaster bias, bij ,
which represents forecast errors that are predictable based on both information
sets. Bias may arise for many reasons, such as behavioral expectation errors or
incentives structures that shift forecasters’ objectives away from minimizing
the forecast MSE (e.g., Chen and Jiang 2006). We take no stance on the source
of either bias. For instance, it could be that Zi is irrelevant (so that zi =0)
but analysts react to it (so that bij depends on Zi). More generally, analysts
could underreact or overreact to any element of Zi or Xi . The final term, ηij ,
is the noise term. Note that this is just a decomposition that holds without any
restrictions. In particular, no assumption is made on the DGP.

To understand what expectation noise captures, it is helpful to distinguish Zi

from the information set used by the forecaster j to make her forecast, which
we denote as Zij . Using this notation, we can break noise down into two parts:

ηij =
[
E
(
Fjπi |Xi,Zij

)−E
(
Fjπi |Xi,Zi

)]︸ ︷︷ ︸
observation noise

+
[
Fjπi −E

(
Fjπi |Xi,Zij

)]︸ ︷︷ ︸
“Kahneman” noise

.

The first part of noise comes from the fact that the forecaster may not
have the “true” information set, meaning that Zi differs from Zij . For
example, consider noisy information models (e.g., Woodford 2003) where
each forecaster receives a signal that is a noisy version of Zi but is rational.
Then, the first term will be nonzero, and there will be noise (see Example 2
below). The second source of noise is captured by the second bracketed term:
variation in forecasts that cannot be explained by forecasters’ information sets.
In most models of expectation formation used in economics and finance, this
term is zero—two forecasters with the same information sets make the same
forecasts. However, in general, this need not be true, as illustrated by the
numerous examples in Kahneman, Sibony, and Sunstein (2021). One possible
microfoundation for such noise is the large evidence in cognitive psychology of
individuals’ noisy retrieval and storage of information (which has been recently
analyzed in Khaw, Li, and Woodford 2020; Woodford 2020; Enke and Graeber
2023).10

We next turn to deriving our MSE decomposition. We perform this
decomposition using consensus forecasts since these are available for all firms
but use individual analyst forecasts for estimation (more details on this below).
Letting Ji denote the number of analysts issuing forecasts on firm i, we define

10 Any elicitation noise and classical measurement error would also generate this second type of noise. However,
we do not emphasize this interpretation because we have little reason to expect these to be large in our setting.
Moreover, even if they were, we do not see a reason to expect them to vary over the forecasting horizon when
we use newly updated forecasts.
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the consensus forecast as the mean forecast across all forecasters:

Fπi =
1

Ji

Ji∑
j=1

Fjπi =xi +zi +
1

Ji

Ji∑
j=1

bij

︸ ︷︷ ︸
≡bi

+
1

Ji

Ji∑
j=1

ηij

︸ ︷︷ ︸
≡ηi

.

Here, bi and ηi represent the bias and noise terms in the consensus forecasts,
respectively. We make the rather weak assumption that Ji ∈ (Xi,Zi), which is
true in our empirical application where it is part of Xi .

We now provide the decomposition of the MSE of subjective forecasts
shown in (1) in the introduction. Define MSEa =E

[
(Fπi −πi)2

]
to be the MSE

of the consensus forecasts and MSEe =E
[
(xi −πi)2

]
to be the MSE of the

econometric forecast. The following lemma states the result.

Lemma 3 (MSE decomposition). Assume that the DGP innovation is uncor-
related with expectation noise: E

(
εiηij

)
=0. Then, the difference between the

MSE of the consensus and econometric forecasts is:

MSEa −MSEe =−E
(
z2
i

)
+E

(
b2

i

)
+var(ηi).

This decomposition formalizes the discussion of the end of Section 1.3.
Analyst forecasts can outperform statistical forecasts if they have soft
information (a large E

(
z2
i

)
), low bias (a small E

(
b2

i

)
) and low noise (a small

var(ηi)). Since the accuracy of consensus forecasts deteriorates at longer
horizons (Section 1.3), longer-term forecasts must have less soft information,
more bias, or more noise.

Our goal is to estimate these three components. The challenge in doing so
is that Zi (and Zij ) is not observed. To make progress on identification, we
need to place more structure on the data. Our approach in this paper is to avoid
making assumptions on the DGP for πi but instead make assumptions on the
structure of forecasts. We next turn to discussing these assumptions.

2.1.2 Structural assumptions The structural assumptions on the data
generating process for the forecasts that we work with for the remainder of
the paper are stated in Assumption 1.

Assumption 1. Subjective forecasts, Fjπi , satisfy the following conditions:

1. The forecaster bias on nonpublic information is proportional to the
quantity of nonpublic information zi :

bij −E (Fπi −xi |Xi)=(α−1)zi . (4)

2. Expectation noise is conditionally uncorrelated with the DGP innova-
tion:

E
(
εi ·ηij |Xi,Zi

)
=0. (5)
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3. Expectation noise is conditionally uncorrelated across forecasters:

E
(
ηij ·ηik |Xi,Zi

)
=0, ∀j �=k. (6)

4. The square of expectation noise is mean independent of the number of
analysts:

E
(
η2

ij |Ji

)
=E

(
η2

ij

)
=var

(
ηij

)
. (7)

Let us discuss these assumptions. Equation (4) is our most significant
structural assumption. It embeds three restrictions. First, it assumes that the
bias on public and soft information is separable, which we view as a natural
starting point given existing models of expectations formation with multiple
information sources (e.g., Chen and Jiang 2006; Maćkowiak and Wiederholt
2009; Kacperczyk, Van Nieuwerburgh, and Veldkamp 2016). This is because
the left-hand side of (4) is the residual bias that remains after we project out
the bias on public information, Xi . Second, it requires that the residual bias,
which is on soft information, is linear in the true quantity of information, zi ,
where α =1 corresponds to the case of no bias. Such linearity is necessary
for identification. This restriction could be viewed as a first-order Taylor
approximation around the mean of zi . Finally, (4) requires bias to be constant
across forecasters. This assumption is in line with the existing literature:
heterogeneity in biases is difficult to estimate, especially when these biases
concern unobserved information.

The three remaining conditions in Assumption 1, (5)–(7), place restrictions
on the noise term. Equation (5) requires forecasting noise to have no direct
effect on realizations—it is already necessary to obtain the main decomposition
in Lemma 3. It would fail, for example, in a model where investors’ noise
about price forecasts would itself affect aggregate demand and thus equilibrium
prices. Equation (6) imposes that the forecaster noise term, ηij , is uncorrelated
across forecasters, which is consistent with the two broad interpretations
of noise discussed above as noisy information (e.g., Woodford 2003) and
cognitive noise (e.g., Kahneman, Sibony, and Sunstein 2021). Equation (7)
ensures that the variance of noise is uncorrelated with the number of analysts
following a firm. It would fail, for instance, if more complex firms are followed
by more analysts with noisier expectations.

Assumption 1 is not generically satisfied, but we now show that it holds
in the several existing models of expectations formation, provided that Zi is
properly defined. As a result, we view Assumption 1 as a good starting point for
decomposing the term structure of forecasts. Even with these restrictions, our
framework is quite rich: we allow for unrestricted bias on public information,
unobserved private information, bias on unobserved information, and noise,
all with no restrictions on the DGP for EPS or across forecasting horizons.
In contrast, many papers in the literature focus on AR1 processes with no
unobserved information.
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Example 1: Full-information rational expectations. Full-information
rational expectations are defined by:

Fjπi =E
(
πi |Zij

)
.

If analysts have full information, Xi is contained in Zij , and all analysts have
the same information set. Setting Zi =Zij implies that

Fjπi =xi +zi,

which satisfies Assumption 1 by setting α =1 and ηij =0. Forecasts are unbiased
with no noise.

Example 2: Noisy information. Suppose for simplicity that there is no
public information so that xi =0 and zi is drawn from a Gaussian distribution
with mean 0 and variance σ 2

z . Analysts receive noisy private signals of zi ,
sij =zi +νij , where νij is a Gaussian noise with mean zero and variance σ 2

ν .
Analysts use the distribution of zi as their prior. Hence, an analyst’s forecast is
given by her posterior expectation:

Fjπi =E(πi |sij )=
σ 2

z

σ 2
z +σ 2

ν︸ ︷︷ ︸
1−λ

sij =zi −λzi︸ ︷︷ ︸
≡bij

+(1−λ)νij︸ ︷︷ ︸
≡ηij

.

Setting Zi ={zi}, this model satisfies the first set of assumptions in Assumption
1, where α =(1−λ). Bias in this model is captured by λ: analysts underreact
more when λ is larger (i.e., when information is noisier). Noise comes from
inference on noisy private signals (1−λ)νij .

Example 3: Biased expectations, public information. Recently, a series
of papers have suggested nonrational models of expectations formation
(Bouchaud et al. 2019; Bordalo et al. 2019). In nearly all of these models,
there is no soft information, so Zi =∅ and zi =0. For instance, Bordalo et al.
(2019) suggest a “diagnostic” model with Xi ={Xi0,Xi1}. In this model,
Xi1 is diagnostic of πi conditional on Xi0, but forecasters overreact to this
information:

Fπi =E(πi |Xi1)+θ [E(πi |Xi1)−E(πi |Xi0)]︸ ︷︷ ︸
≡bi

.

This model satisfies Assumption 1 with no noise or soft information. The
bias is conditional on public information Xi . Similarly, a model with “sticky
expectations” (as used in Bouchaud et al. 2019) where forecasters overweight
the past realizations of an AR1 process, satisfies our assumptions. Like the
“diagnostic” model, this model has only bias and no noise.

2.2 Identifying the decomposition
Given the assumptions in Assumption 1, we can now provide a version of the
decomposition of the MSE that we will be able to estimate.
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Noise in Expectations: Evidence from Analyst Forecasts

Proposition 1. Under Assumption 1, the generic decomposition of Lemma 3
writes:

MSEa −MSEe =−�+
[
�+(1−α)2�

]
+

1

J
, (8)

where

• �=E
(
z2
i

)
measures soft (i.e., nonpublic) information,

• �≡E
[
(E(πi |Xi)−E(Fπi |Xi))2

]
is the bias on public information,

• (1−α)2� is the bias on soft information,
• ≡var

(
ηij

)
is the individual expectation noise, and

• 1
J

=E
(

1
Ji

)
is the expected inverse number of forecasters per firm.

Equation (8) writes our baseline decomposition (which always holds but cannot
be estimated) as a function of the four key parameters that we will be able to
estimate. � is the variance of zi , i.e., the quantity of soft information that a
rational analyst would use. Total bias is the term in brackets, �+(1−α)2�.
The first term is the bias on public information, and the second one is the
bias on soft information: it increases with (1−α)2 and with the amount of soft
information �. The final term is noise, 1

J
. Since noise  is defined at the

analyst level, it is inversely proportional to the number of forecasters because
noise is independent across forecasters.

We now discuss how we identify �, α,  and �. First, note that �, the bias
on public information, is directly identified from the data:

�=E
[(

E(Fjπi |Xi)−E(πi |Xi)
)2
]
.

This is the exercise that most of the current literature on expectation
bias undertakes. The following proposition shows how the remaining three
parameters are identified.

Proposition 2. Define F ∗
ij and π∗

i as residuals from projections onto
observable information:

F ∗
ij ≡Fjπi −E

(
Fjπi |Xi

)
,

π∗
i ≡πi −E (πi |Xi).

Under Assumption 1, α, �, and  are identified by the following moment
conditions:

cov
(
π∗

i ,F ∗
ij

)
=α�,

var
(
F ∗

ij

)
=α2�+,

cov
(
F ∗

ij ,F
∗
ik |j �=k

)
=α2�.
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The first moment condition in Proposition 2 states that the covariance between
the forecasts of analysts and realizations of EPS depends on soft information,
�, and the weight that analysts place on it, α. If analysts are unbiased
on soft information, then this covariance directly estimates the size of the
soft information component. The second condition simply states that analyst
forecasts, after public information is projected out, can vary for two reasons:
because of soft information and because of noise. Finally, the third moment
condition is the covariance between forecasts of different analysts forecasting
the same realization. Here, our assumption that noise is uncorrelated across
analysts is crucial, as it implies that this covariance is due to analysts seeing
the same soft information and sharing bias toward it.

To clarify identification, it is helpful to rewrite the three moment conditions
in Proposition 2 as:

α =
cov

(
F ∗

ij ,F
∗
ik |j �=k

)
cov

(
π∗

i ,F ∗
ij

) ,

�=
cov

(
π∗

i ,F ∗
ij

)
α

,

 =var
(
F ∗

ij

)−cov
(
F ∗

ij ,F
∗
ik |j �=k

)
The first equation shows that bias on soft information is identified as
the excess comovement of analyst forecasts relative to the comovement of
forecasts and realization. The intuition here is that if analysts are using their
information correctly, their forecasts should have the same correlation as with
the realization. In contrast, if analysts rely excessively on soft information (e.g.,
α>1), their forecasts will be too correlated relative to the comovement with
the DGP. The second equation is straightforward: once we have identified α,
� follows from rescaling the covariance between forecasts and realizations
by analyst bias. Finally,  is identified as a residual variance: any variance in
forecasts that cannot be accounted for by comovement between analysts. This
is because noise across analysts is uncorrelated by assumption.

2.3 Estimation strategy
We now discuss in detail how we use Proposition 2 in the estimation. We start
with public information, which is a separate block. The first step to estimate
E(πi |Xi) and E(Fjπi |Xi) to compute �, the bias on public information, and
to residualize the forecasts and realization with respect to public information.
To estimate these two conditional expectations, we apply the same procedure
described in Section 1.2. In particular, for each forecasting horizon, h, we use
our elastic net estimate of E(πi |Xi) from Table 2 and then apply the same
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Noise in Expectations: Evidence from Analyst Forecasts

procedure to estimate E(Fjπi |Xi)=E(Fπi |Xi).11 The subjective forecasts
Fπit+h that we work with are consensus forecasts, consistent with Section
1.3 and the decomposition that we are interested in (which is written at the
consensus level).

Second, we use these ML estimates to residualize the realizations and
forecasts with respect to observables Xit . These residuals (F ∗

ij and π∗
i ) capture

variation in earnings and analyst forecasts orthogonal to public information. We
also use our ML estimates to calculate the public information bias directly12:

�̂= Ê

[(
Ê(Fπi |Xi)−Ê(πi |Xi)

)2
]

where Ê denotes the sample expectations estimated by our supervised learning
estimators in the first step. By replacing conditional expectations with function
approximations from our machine learning estimators, we are implicitly
assuming that our machine learning estimators are consistent at reasonable
rates given our sample size. Without further restrictions on the data generating
process for πit+h, there are no theoretical results that justify this assumption.
However, a growing theoretical literature suggests that the assumption is
satisfied under a variety of reasonable assumptions about the DGP.13

Finally, estimate the three remaining parameters, �, �, and , by
performing a separate generalized method of moments (GMM) estimation with
the three moment conditions in Proposition 2 for each h. Since we have separate
estimates for each h, we index our estimates with the subscript h (e.g., �h).
Our estimation requires some reweighting to account for the fact that most
analyst forecasts cover nonoverlapping sets of firms. We discuss the details of
the GMM procedure in Internet Appendix E.

2.4 Results
Parameter estimates. Figure 2 presents our estimates for the eight different
forecasting horizons h. The red circles correspond to quarterly forecasts, while
the blue squares correspond to annual forecasts. Our estimates of (�h,�h,h)
are normalized by the realized mean of π2

it+h. This is a natural normalization
because these elements add to the MSE, which we normalize the same way
(see Section 1.3).

Focusing first on quarterly forecast horizons (the red squares in Figure 2),
we estimate a noise component of approximately 5% and a public information

11 We obtain quantitatively similar results with our two tree-based methods but choose to present the results with
elastic net for simplicity.

12 Under the assumption that our machine learning estimators are consistent, this is formally justified by the
continuous mapping theorem.

13 For asymptotic results on the approximation error of various supervised learning estimators under different
DGP assumptions in large samples, see Belloni, Chernozhukov, and Hansen (2011) for iterative lasso,
Chetverikov, Liao, and Chernozhukov (2020) for cross-validated lasso, Wager and Athey (2018) for random
forests, and Schmidt-Hieber (2020) for deep neural networks.
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Figure 2
The term structures of information, bias, and noise
This figure plots our results from estimating our four parameters of interest across our eight forecasting horizons.
�h is the soft information; �h is the analyst bias on public information; h is the analyst noise; and αh −1 is the
bias on soft information. Red circles represent quarterly forecasts, and blue squares represent annual forecasts.
For the results plotted here, we use elastic net to estimate the two conditional expectation functions. All estimates
(except for αh) are normalized by the average squared earnings per share divided by price, calculated across this
entire subsample for the relevant forecasting horizon. Error bars represent 95% confidence intervals based on a
firm-level bootstrap with 200 iterations. See Section 2.3 and Internet Appendix E for additional details.

bias component of approximately 4%. We can reject the null hypothesis of
no deviations from rational expectations, as these elements are statistically
different from zero. However, at short horizons, these deviations are dominated
by a large amount of soft information, consistent with the fact that analyst
forecasts are overall more accurate than econometric forecasts at these horizons
(Table 2). The amount of soft information decays relatively quickly, however,
as does the relative accuracy of analyst forecasts. Looking at α, we see that
bias on soft information is nonzero but small (α≈1). At longer horizons, there
is bias (α>1), but there is less soft information, so the overall quantity of soft
information bias declines.

Turning to annual forecasts (the blue squares in Figure 2), we see the first
main result of our paper. The term structures of noise and bias are upward
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Noise in Expectations: Evidence from Analyst Forecasts

Figure 3
Bias on public versus soft information
This figure plots our estimate of analyst bias on public and soft information represented by red circles and blue
squares, respectively. Both parameter estimates are normalized by the average squared earnings per share divided
by price, calculated across this entire subsample for the relevant forecasting horizon. Error bars represent 95%
confidence intervals based on a firm-level bootstrap with 200 iterations. See Section 2.3 and Internet Appendix E
for additional details.

sloping. In contrast, the quantity of soft information decreases with the horizon,
first very rapidly and then at a slower pace after 1 year. For each additional
year, we estimate that the amount of noise in subjective forecasts increases by a
factor of approximately 1.5–2. We find a similar pattern for public information
bias.14

A key contribution of our paper is to measure the bias on soft information
(1−αh)2�h and to compare it with the bias on public information �h

(which most of the literature focuses on). We provide this comparison in
Figure 3. At short horizons, both biases are relatively small and of comparable
magnitude (a few percent of the mean sum of squared realizations). At longer
horizons, observable bias becomes very large (30% of the mean sum of
squared realizations), while the amount of bias on soft information remains
modest. As we noted above, not much soft information is available at longer
horizons.

MSE decomposition. Overall, bias and noise increase at longer forecasting
horizons, while soft information decays. These all could explain the fact
from Section 1.3 that subjective forecasts lose their comparative advantage

14 One possible concern with these results is that the sample of firms changes across forecasting horizons. We
perform our estimation on a subsample of firm-years for which we have forecast data at all horizons. The slopes
of the term structures that we estimate are quantitatively similar.
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Table 3
Decomposition of MSEa −MSEe

Horizon: h MSEa −MSEe −� � (1−α)2� 1
J



1 quarter −22.58% −24.82% 0.45% 0.73% 1.05%
2 quarters −12.84% −14.92% 1.08% 0.06% 0.93%
3 quarters −8.33% −11.74% 2.36% 0.06% 0.99%
4 quarters −2.05% −9.51% 5.56% 0.61% 1.28%
1 year −9.81% −12.71% 2.25% 0.0% 0.64%
2 years 6.32% −8.02% 11.04% 2.08% 1.23%
3 years 12.57% −7.69% 12.17% 3.99% 4.1%
4 years 40.45% −5.38% 29.23% 6.24% 10.36%

This table decomposes the difference between the mean squared error of the consensus forecasts MSEa , and that
of the econometric forecasts, MSEe , shown in (8) at each forecasting horizon, h. All values are normalized by
the average squared earnings per share divided by price, calculated across this entire subsample for the relevant
forecasting horizon. MSEa , MSEa , and 1

J
are calculated by taking sample expectations over a panel of firm-year-

analyst pairs, which is slightly different from the procedure in Table 2. See Internet Appendix E for additional
details.

at longer horizons relative to statistical forecasts. Using the decomposition of
Proposition 1, we can attribute the term structure of MSEa −MSEe to each one
of its components: −�, �, �(1−α)2, and J−1.

Table 3 reports the results, where (as before) each component is normalized
by the mean sum of squared realizations. At short forecasting horizons, such as
one or two quarters, we find that soft information is the main reason subjective
forecasts outperform statistical forecasts: the public information bias, private
information bias, and noise components combined are only approximately
10%–20% of the magnitude of the soft information contribution. Among the
two sources of bias and noise, public information bias plays the largest role at
these short forecast horizons, but this role is still small relative to that of soft
information.

Consistent with Figure 2, the picture changes at longer forecasting horizons.
Starting at four quarters, the bias and noise components combined are as large
as the soft information component. At forecasting horizons of greater than
1 year, where the econometric forecasts outperform the subjective forecasts,
the magnitudes of bias and noise increase from approximately 1.5 times the
magnitude of soft information at 2 years to 3 times its magnitude at 3 years
and over 9 times that at 4 years. Most of the ability of machine forecasts to
outperform statistical forecasts is driven by public information bias and, to a
lesser extent, noise. Noise plays a smaller role because its effect is dampened by
1
J

. Private information bias also plays a small role simply because the quantity
of soft information declines at longer horizons.

In sum, our estimation uncovers strongly upward-sloping term structures
of bias and noise but a decreasing term structure of soft information. In the
remainder of the paper, we first discuss two implications of the upward-sloping
term structure of noise in Section 3 and then examine what restrictions our
estimates place on models of belief formation.
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3. Implications of Expectation Noise

3.1 Interpreting the Coibion-Gorodnichenko coefficient
The first implication of our decomposition is that it provides a simple
explanation why the Coibion-Gorodnichenko (CG) coefficient should decrease
and become negative at longer horizons. While this fact can be interpreted
as increasing overreaction at longer horizon, we show that more negative CG
coefficient naturally emerges from the upward-sloping term structure of noise
that we uncover.

The CG coefficient at horizon h is defined as the slope coefficient, βCG, in
the following OLS regression:

πit+h−F
j
t πit+h =α+βCG

(
F

j
t πit+h−F

j

t−1πit+h

)
+eit . (9)

At an intuitive level, βCG measures over- and underreaction. βCG will vary with
horizon h, but we omit the index to lighten the notation. If βCG >0, updates
predict positive (ex post pessimistic) errors, that is, underreaction. When βCG <

0, this is taken as evidence of overreaction.
Now, imagine that forecasts are biased (say, over- or underreacting) but

also noisy. In this case, it is easy to see that noise will make the coefficient
βCG smaller (or even negative) relative to what the pure pattern of under- or
overreaction would suggest. Our estimation allows us to measure this bias in
the data, and we find that it is very large, especially at long horizons where
noise is large.

To see this, write F
j

t πit+h =F
j
t πit+h−ηh

ijt as the forecast in a world without
noise. Write the variance of forecast revisions from the data as σ 2

rev and
σ 2

rev as the variance of noiseless forecasts. The following result characterizes
the relationship between the observed CG coefficient (generated by noisy
forecasts) and a counterfactual CG coefficient with pure bias and no noise.15

Proposition 3. Assume that the noise term at t , ηh
ijt , is uncorrelated with the

noise term at t −1, ηh
ijt−1. Write the CG coefficient estimated using observed

forecasts at horizon h as βCG and the CG coefficient estimated using noiseless
forecasts as βCG. Then:

βCG =βCG∗ σ 2
rev −h

σ 2
rev

σ 2
rev =σ 2

rev +h +h+1,

where h is the noise contained in forecasts of horizon h. Thus, given measures
of noise, one can infer βCG and σ rev from βCG and σrev.

15 This result requires noise to be uncorrelated over time, as stated in the proposition. We view this as a reasonable
assumption since it holds in most formulations of noisy expectations models.
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Figure 4
Noise and Coibion-Gorodnichenko regression coefficient
The figure shows the effect of expectation noise on the analyst-level CG coefficient. The x-axis in the figure is
the forecasting horizon, h. For each h, we estimate the CG coefficient by estimating (9) on the sample of firm-
years-analysts for which we have horizon h forecasts at t and horizon h+1 forecasts at t −1. This estimate is
represented by the rightmost red bars, denoted by βCG. We then compute the CG coefficient without noise using
Proposition 3, βCG, which is represented by the leftmost light-blue bars. In the middle blue bars, we plot the

CG coefficient that would be obtained with just the noise attenuation effect, which is βCG +σ−2
rev. To account

for the fact that the sample for which we observe forecast revisions is smaller than our sample in Table 1, we
reestimate the two noise terms required for each horizon on this subsample.

Proposition 3 allows us to compute the noiseless βCG and σ rev from their
observed counterparts. It also shows that noise has two effects on the CG
coefficient. First, noise induces a negative correlation between forecast errors
and forecast revisions, both of which contain the same noise term with opposite
sign. The second effect is a classic attenuation bias: noise induces measurement
error for the “true” revision, so the coefficient is smaller in absolute value.

In Figure 4, we show that noise obscures inference about over- or
underreaction based on the CG coefficient. First, we report the observed CG
coefficient directly in raw data.16 The results of this regression are shown
in the red bars in Figure 4. At the 1-year horizon, we estimate βCG ≈0.1
(consistent with Bouchaud et al. 2019). At longer horizons, the CG coefficient
decreases monotonically, flipping sign at the 3-year horizon. This pattern is
consistent with existing literature that finds that individual-level forecasts tend
to underreact at short horizons (e.g., Bouchaud et al. 2019) and overreact at
longer horizons (e.g., Giglio and Kelly 2018; Bordalo et al. 2020; D’Arienzo
2020).

16 We estimate the regression pooling all firm-year-analyst observations, as in Bouchaud et al. (2019).
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Next, we use Proposition 3 to compute the noise-free βCG, which is shown
in light blue bars in Figure 4. In contrast to the observed CG coefficient,
our estimate of the counterfactual noiseless CG coefficient is positive at all
horizons and increases with the horizon. Thus, the bias contained in forecasts
shows more underreaction at longer horizons, instead of a flip to overreaction.
The dark blue bar in the middle is the pure effect of attenuation, which cannot
flip the sign of the CG coefficient but is shown to reduce its magnitude
considerably.

3.2 Forecast complementarity
In addition to affecting the term structure of the CG coefficient, the results in
Figure 2 highlight a tension from the perspective of a forecaster. On the one
hand, subjective forecasts are biased and noisy at longer horizons. However,
at the same time, subjective forecasts still contain nontrivial amounts of
soft information, even at longer horizons. Perfect (unbiased) use of this soft
information would result in approximately the same order of magnitude of
gain in MSE as that obtained by relying on analyst forecasts over econometric
forecasts at short horizons (Table 2). Together, these findings suggest there
should be some complementarity between subjective and statistical forecasts
at longer horizons.

To examine the presence of such complementarity, we ask how much
predictive power consensus forecasts add to the information set of the
econometrician, Xit . We define an “augmented forecast” model that is fitted
to optimally combine the features Xit and analyst forecasts to predict future
earnings. Characterizing the MSE of this augmented forecast is not possible
without further distributional assumptions. To build intuition, the following
proposition assumes that soft information and noise are both normally
distributed.

Proposition 4. Assume that zi and ηij are jointly normally distributed. Then,

MSEa −MSEe+a =

[
�+(1−α)2�+(1−β2)

1

J


]
−[(1−αβ)2�

]
,

where β = α�

α2�+ 1
J


≤1.

Proposition 4 explains how the augmented forecasts compare to the pure
analyst forecasts. The first term in brackets captures the fact that econometric
adjustment reduces noise and bias. It optimally gets rid of predictable bias.
This is because one projects the forecast error on observables, and subtracts
them from the subjective forecast. It also adjusts the bias on soft information
�(1−α)2 and reduces the amount of noise 1

J
.

However, the second term in brackets shows a trade-off: the augmented
forecast differs in terms of how it uses soft information, placing weight βα
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Table 4
The term structure of forecasting accuracy: Analyst versus econometrician + analyst forecasts

MSEa
h

MSEe+a
h

Horizon: h Analyst Elastic Net Random Forest Boosted Trees

1 Quarters 4.6% 4.56% 4.81% 4.71%
(−2.26) (6.92) (4.1)

2 Quarters 8.43% 8.49% 8.9% 8.76%
(1.3) (6.55) (5.48)

3 Quarters 13.05% 12.85% 13.02% 12.95%
(−1.49) (−0.19) (−0.67)

4 Quarters 18.71% 17.61% 17.73% 17.69%
(−4.16) (−3.14) (−3.47)

1 Years 9.9% 9.82% 10.01% 10.0%
(−0.7) (0.73) (0.68)

2 Years 29.19% 25.49% 24.13% 25.13%
(−5.38) (−6.05) (−4.63)

3 Years 33.32% 25.1% 24.37% 25.4%
(−15.11) (−13.55) (−11.22)

4 Years 46.41% 26.73% 25.29% 27.55%
(−16.96) (−16.82) (−15.88)

This table contains the mean squared error of analyst forecasts in the first column, denoted as MSEa
h

, and of our
econometrician + analyst forecasts, denoted as MSEe+a

h
, across different forecasting horizons for forecasts of the

realization of EPS at t +h divided by price per share at t . The numbers reported in the table are normalized by
the mean squared realization of earnings to price at each horizon, which represents the percentage utility loss
relative to having perfect foresight in the interpretive model presented in each year (Section 1.3). In parentheses,
we report the Diebold-Marino test statistics for testing the relative accuracy of the two forecasts under a squared
loss function, where the asymptotic variance is calculated by performing a bootstrap at the year level with 1,000
iterations.

on soft information instead of α. This term arises because the augmented
forecast faces a trade-off when deciding how much weight to put on subjective
forecasts (i.e., β): increasing the weight allows it to leverage soft information
but also introduces more noise. When there is no noise, β =α−1, and the
augmented forecast corresponds to the full-information rational expectations
(FIRE) baseline.

In Table 4, we empirically explore the relative performance of the augmented
forecast and the analyst consensus. The augmented forecast is generated by
means of the same methodology as our econometric forecasts with the addition
of consensus analyst forecasts as an additional predictor. The layout is identical
to that of Table 2: we show the MSEs at different forecast horizons along
with Diebold–Marino test statistics under a squared loss function. We find
that at quarterly and the 1-year horizons, the augmented forecast cannot
meaningfully beat the analyst consensus. This is to be expected, given our
results in Figure 2. Subjective forecasts are not very biased at short horizons
and have substantial soft information, which makes them a tough benchmark to
beat (α≈1). At longer horizons, however, the augmented forecast dominates by
a large amount: 9 and 21 percentage points of realized MSS at the 3- and 4-year
horizons, respectively. However, comparing these results to those in Table 2
shows that the improvement relative to the pure econometric forecasts is small:
approximately 1 to 3 percentage points. This is consistent with the trade-
off highlighted in Proposition 4: although long-horizon subjective forecasts
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contain information, the upward-sloping term structure of noise means that it
is difficult to extract this information.

We conclude this section by noting an additional implication of Proposition 4
for optimal forecasting. Although combining subjective and statistical forecasts
no longer offers a “free lunch” in the presence of noise, increasing the number
of forecasters in the consensus, J , does (as in Kahneman, Sibony, and Sunstein
2021). This result follows from our assumption that noise is uncorrelated across
forecasters such that noise in the consensus forecast will be averaged out as the
number of forecasters increases. Changing the number of forecasters is clearly
not possible in our setting, but this insight could be useful in organizational
settings for objectives, such as forecasting demand (e.g., Bajari et al. 2019) or
hiring workers (e.g., Bergman, Li, and Raymond 2020).

4. Models of the Term Structures of Bias and Noise

In this section, we explore the extent to which existing expectations models can
fit the estimated patterns in the term structure of bias and noise from Section 2
jointly. We first show that these models, in their simplest form, cannot match
the term structures of noise and biases jointly. Thus, a mechanism needs to be
added—we propose a simple model in the spirit of Patton and Timmermann
(2010). This mechanism is portable and could be added to existing models. We
then estimate this model and show that it can also explain the cross-sectional
relationship between noise and volatility.

4.1 Existing models
We first consider a list of classic models for the term structures of bias and
noise. We primarily focus on variants and extensions of noisy information
models, which correspond to a standard framework that has predictions on the
term structure of expectation noise and bias.

Setup. Because the horizon is a critical part of our discussion here, we revert
to notation with the explicit time of forecast t and horizon h. We omit i and j ,
as these indices are not important in this discussion (hence, there is, say, only
one analyst and one firm). Given our notations and key structural assumptions,
the DGP and consensus forecast write:

πt+h =xh
t +zh

t +εh
t ,

Ftπt+h = gh(Xt )︸ ︷︷ ︸
=E(Ftπt+h|Xt )

+αhz
h
t +ηh

t . (10)

Each model that we will consider delivers a forecasting equation of the form
in (10).

In line with the literature, we also impose additional structure on the data
generating process. We do this in this section only and mostly to clarify the
discussion. The structure that we impose on the DGP is described below:
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Assumption 2. The laws of motion for xt and zt are

xt =ρxxt−1 +ux
t , zt =ρzzt−1 +uz

t ,

where E
(
ux

t |xt−1
)

=E
(
uz

t |zt−1
)

=0 and [ρx,ρz]∈ (0,1)2.

4.1.1 Baseline noisy information model We first consider a baseline noisy
information model in the spirit of Woodford (2003). This model is the most
natural starting place because it generates both bias (from the viewpoint of
the econometrician) and noise, as shown in Section 2.1. In this model, the
econometrician observes xt , but not zt . The analyst observes noisy signals of
xt and zt , denoted by Sx

t and Sz
t , respectively. Given these signals, the analyst

applies Bayes’s rule to form forecasts as follows:

Ftxt =E
(
xt |Sx

t

)
, Ftzt =E

(
zt |Sz

t

)
, (11)

Ftxt+h =ρh−1
x Ftxt , Ftzt+h =ρh−1

z Ftzt , Ftπt+h =Ftxt+h +Ftzt+h. (12)

Equations (11) and (12) characterize the two-step process performed by
the forecaster in the noisy information model. First, the forecaster forms a
belief about the current state, which is rational conditional on her information
set. Next, the forecaster forms h-period-ahead forecasts by combining her
knowledge of the data generating process with her forecasts from the first step.

This model is enough to pin down the term structure of bias and noise. The
following proposition summarizes the results.

Proposition 5. Write �h, h, �h and αh as the soft information, noise, public
information bias, and soft information bias at horizon h. Then, in the baseline
noisy information model, the term structure of public and soft information bias
are downward sloping:

�h+1

�1
=ρ2h

x ≤1

(1−αh+1)2�h+1

(1−α1)2�1
=ρ2h

z ≤1.

The term structure of noise is also downward sloping:
h+1

1
=θρ2h

x +(1−θ )ρ2h
z ≤1,

where θ ∈ [0,1] is the fraction of total noise at h=1 that comes from Sx
t .

To build intuition for this result, assume that h→∞. Because xt and zt are
stationary processes, the best infinite-horizon forecast is their long-run mean,
0. Thus, the analyst will be unbiased in this extreme case and will also issue
noiseless forecasts because she will place no weight on her sequence of noisy
signals. Thus, bias and noise should decline at long horizons. The evidence in
Section 2.4 provides a clear rejection of this prediction, as the term structures
of noise and bias are upward sloping.
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4.1.2 Variants of the baseline noisy information model We now discuss the
predictions of commonly used variants of the noisy information model for the
term structures of public information bias and noise.

Bounded rationality. A common microfoundation for noisy information
models is bounded rationality (e.g., Sims 2003). In these models, the
set of signals is endogenously chosen to maximize an objective function
decreasing in forecast errors, subject to a cost function increasing in the
mutual information of the signals. Although these models introduce a tight
connection between the signals and primitives (e.g., signal precision and
cognitive capacity), they also have downward-sloping term structures of bias
and noise because they satisfy equations (11) and (12).

Diagnostic expectations. Bordalo et al. (2020) combine diagnostic expecta-
tions, which generate overreaction to recent news, with noisy information. This
model breaks (11) because of nonrational expectations about the current state.
However, the forecast dynamics are an AR1 process as in equation (12). Thus,
this model exhibits downward-sloping term structures of bias and noise for the
same reason as in the case of the baseline noisy information model. Intuitively,
the analyst knows that xt is mean reverting, so even if she overreacts to news at
short horizons, she knows that in the long run, xt will go back to the long-run
mean.

Overconfidence. Another common way to generate nonrational reactions
in the noise information framework is via agents’ overconfidence about
their signal qualities (e.g., Daniel, Subrahmanyam, and Hirshleifer 1998;
Eyster, Rabin, and Vayanos 2019). In the common case where Sx

t consists
of signals each period with independent normal errors, overconfidence
corresponds to the analyst updating using a variance lower than the true signal
variance. Since overconfidence changes only (11), it will change only the level
of bias and noise, not the term structure of forecasts.

4.1.3 Alternative frameworks that break (12) The previous section shows
that noisy information models cannot match the term structure of bias and noise
because (12) holds: forecasters are rational in the long run because they know
the DGP’s parameters. We now consider three sets of models that break this
equation in different ways.

Learning about the mean. The second way to break (12) is to assume
that the forecaster believes the long-run mean of xt is μ̂x �=μx . Afrouzi et al.
(2023) provide a model of this sort where the forecaster does not know
μ and consequently overweights recent information in her estimation. In
Internet Appendix F, we show that this model has the potential to qualitatively
match our data, as long-run forecasts are further from the rational expectation
benchmark, but we cannot do so quantitatively.

Misspecified stationary model. The first way to break (12) is to assume
that the forecaster believes the persistence of xt is ρ̂x >ρx , while main-
taining noisy information. Angeletos, Huo, and Sastry (2020) show that this
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overextrapolation is necessary for matching overreaction in macroeconomic
expectations. Although this type of overextrapolation can make the term
structures of bias and noise less downward sloping in our setting, they remain
downward sloping because the forecaster still believes that the process mean-
reverts.

Misspecified nonstationary model. Fuster, Laibson, and Mendel (2010)
propose a framework known as natural expectations in which the law of iterated
expectations fails. In this framework, the true DGP is a stationary AR2 in
levels, but the forecaster has an “intuitive” DGP that is an AR1 in changes.
Importantly, because the intuitive model is nonstationary, this model gets a
larger weight at longer horizons, which generates an upward-sloping term
structure of bias. However, this model does not have noise, which is why we
turn to the following structure.

4.2 Proposed model
Model description. Consistent with our approach in Section 2, we deviate from
prior literature and place no restrictions on the data generating process. We
assume that forecasts are described by:

Ftπt+h =(1−mh)dh
t +mhE(πt+h |Xt,Zt ), (13)

=(1−mh)dh
t +mh

(
xh

t +zh
t

)
.

This forecasting equation is motivated by the inattention framework of
Gabaix (2014), where dh

t corresponds to a cognitive default and mh ∈
[0,1] represents the horizon-specific amount of attention to processing the
available information. If mh =1, the analyst issues a forecast equal to the
conditional expectation. Unlike Gabaix (2014), however, and in the spirit of
Patton and Timmermann (2010), we let dh

t be a random variable, which we
parameterize as follows:

dh
t =β0 +βxx

h
t +βzz

h
t +νh

t , var(νh
t )≡σ 2

ν .

The cognitive default, dh
t , may contain noise, νt , which we assume is

independent across horizons, forecasters, and firms. We also allow the default
to potentially depend on the state variables via βx and βz. The fact that dh

t is a
noisy default is crucial to this framework. Note that this model nests the case
of full-information rational expectations if mh =1 and the case of unbiased but
noisy forecasts if βx =βz =1 and β0 =0.

As in Patton and Timmermann (2010), we discipline the term structure of
mh through one parameter only and assume

mh(κ)=
κ2

κ2 +MSEFIRE
h

, (14)

where
MSEFIRE

h =MSEe
h−�h =E

[
(πt+h−E (πt+h |Xt,Zt ))

2]
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is the MSE of the FIRE forecast. This specification of mh captures a form
of bounded rationality: the forecaster relies more on her default when πt+h is
harder to predict. It will be key to matching the upward-sloping term structures
of noise and bias. At long horizons, profits are harder to predict, so forecasters
will lean more on noisy and biased defaults.

Term structures of noise and bias. In this model, we can derive
the term structures of bias and noise, summarized in the following
proposition.

Proposition 6. Public information bias, soft information bias, and noise are
given by:

�h =(1−mh)2E
[(

β0 +(βx −1)xh
t

)2
]
,

αh =1+(1−mh)(βz−1),

h =(1−mh)2σ 2
ν .

The level of public information bias is determined by the extent which the
default is unconditionally biased (β0) and biased on xh

t , captured by βx

being different from 1. In addition, this bias is magnified by the reliance
on a default (large (1−mh)2). Similarly, the bias on soft information is
larger if the forecaster relies on the default more (mh small) or if the
default is more biased (βz−1 larger). Last, expectation noise comes from
default noise, σv , and the extent to which the forecaster relies on the default,
mh.

The expressions in Proposition 6 illustrate how our model links bias and
noise. To match the upward-sloping term structures of noise and bias, we need
mh to decrease in h. This will not be difficult to achieve since MSEFIRE

h

increases with h. The question is whether the model will be quantitatively
successful.

In sum, our model has only five parameters: (a) σ 2
v , which pins down the

average level of noise in subjective forecasts; (b) β0, βx , and βz, which pin down
the amount of public and soft information bias; and (c) κ , which determines the
relative weight of the rational forecast and governs the term structures of both
noise and bias.

Estimation. We estimate the model using a minimum distance estimator in
which we match model moments to their empirical counterparts. In addition
to the term structures of bias (on public and soft information) and noise, we
target two other moments: the intercept and slope coefficient from regressing
Ftπt+h onto xh

t , which we write as δ0 and δ1, respectively. These moments
help identify β0 and βx . Write as θ =(σv,β0,βx,βz,κ) the vector of the five
model parameters. We define the vector of differences between the model and
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Table 5
Minimum distance estimation results

κ σν β0 βx βz

MDE Estimate 0.0651 0.0635 0.0738 0.924 2.2274
Std. Error (0.0016) (0.0031) (0.0029) (0.0197) (0.1559)

Implied mh
m1 = 0.887 m2 = 0.752 m3 = 0.663 m4 = 0.590

This table presents the results from estimating the five parameters of the model in Section 4.2 using minimum
distance estimation. We target the term structures of αh, �h and h from Figure 2, in addition to the intercept

and slope coefficients from regressing F
j
t πit+h onto xh

it
. This results in a total of 20 moments across our four

annual forecast horizons. As a weighting matrix, we use the inverse of the diagonal of the variance matrix from
our GMM estimation in Section 2.4. Standard errors are calculated using the covariance matrix from the GMM
estimated in Section 2.4 and two-sided finite differentiation to calculate the Jacobian of the moment conditions.
The table also shows the implied values of mh, which are calculated by plugging the estimated value of κ into
(14).

empirical moments, Mh(θ ), as:

Mh(θ )=

⎛
⎜⎜⎜⎜⎜⎝

αh−[1−mh(κ)]βz−mh(κ)

�h−[1−mh(κ)]2E
[(

β0 +(βx −1)xh
t

)2
]

h−[1−mh(κ)]2σ 2
ν

δ0
h−[1−mh(κ)]β0

δ1
h−[1−mh(κ)]βx −mh(κ)

⎞
⎟⎟⎟⎟⎟⎠.

Given that we have four annual forecast horizons, these five term structures
give us a total of 5×4=20 moment conditions that we stack into a single vector
M(θ ). We can then estimate the model using a minimum distance estimator.
Given the scale difference of these moments, we weight this estimator with the
inverse of the diagonal of the variance matrix from our GMM estimation in
Section 2.4.

4.3 Estimation results and model fit
The results from our minimum distance estimation are presented in Table 5.
We find evidence of significant noise in the default: σv ≈0.064. For reference,
sd(xt +zt )≈0.07, implying that the noise we estimate in the default is similar
to the noise in the data generating process. This significant cognitive noise is
needed to match the average level of noise across the four forecasting horizons.

Our model’s most important parameter is κ , which determines the slope of
the term structure of bias and noise through mh. We estimate κ ≈0.065. To
interpret this estimate, Table 5 presents the implied values of mh from this value
of κ , which range from m1 =0.89 to m4 =0.59.

Finally, our model has three parameters that control the cognitive default.
We estimate β0 ≈0.07, βx ≈0.924, and βz ≈2.2. These estimates imply that
there is fixed optimism in analyst forecasts and that the upward-sloping term
structure of αh is driven by analysts’ overweighting of soft information and
underweighting of public information relative to the rational expectation.

Figure 5 plots the term structures in our estimated model versus the data. The
results show that our model reproduces all three term structures reasonably well
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Noise in Expectations: Evidence from Analyst Forecasts

Figure 5
The term structure of information, bias, and noise: Model and data
This figure presents a comparison of the term structures of bias and noise in the data versus in the model in
Section 4.2. The moments in the model are calculated using Proposition 6 and the parameter estimates in Table 5.
The sample used here is the same sample as in Figure 2.

due to the decreasing term structure of mh in Table 5. However, it struggles
to fit the amount of bias and noise at long horizons, which is not entirely
surprising because the function mh(κ) is concave in the rational forecast
error at long horizons. Nevertheless, we view the fact that a model with one
parameter, κ , controlling the slope of all three structures fits the data quite
well as an important takeaway from this estimation. These results suggest that
the underlying mechanisms generating bias and noise are linked, echoing the
findings of Enke and Graeber (2023).

4.4 Noise and volatility
A central ingredient in our model is that forecasters dealing with volatile
processes tend to lean on their default more, which implies more bias and
more noise: equation (14). In this section, we provide two additional pieces
of evidence in support for this central ingredient: (1) noise is higher when
the volatility of the underlying process is higher, and (2) our model does a
reasonable job reproducing this relationship out of sample.

We begin by examining how noise varies cross-sectionally with the volatility
of the underlying DGP, for which we proxy using equity volatility. Ideally, we
would measure volatility of earnings directly, but this is not possible because
we have one annual earnings observation for each firm-year. We instead use
daily equity return volatility because it (1) is easy to compute at the yearly
level and (2) serves as a natural proxy for the volatility of cash flows, given
that most of the variation in firm-level valuation ratios is driven by cash flow
news (Vuolteenaho 2002).

To perform this analysis, we split the sample into 10 equally spaced bins of
equity volatility (computed using trailing 5-year windows of monthly returns).
In each one of these bins, we then estimate (,�,α) by applying the estimation
strategy described in Section 2.3.17 We thus come up with 10 different values

17 The patterns in Figure 6 are robust to our using different windows for calculating returns.
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Figure 6
Noise and equity volatility
This figure plots our estimates of noise at three different horizons across evenly spaced bins of equity volatility,
measured by the annualized standard deviation of monthly stock returns from CRSP over the past 5 years for
firm i in year t . Error bars represent 95% confidence intervals based on a firm-level bootstrap with 200 iterations.

of noise , which we normalize as usual by the sum of squared realizations. We
then reproduce this procedure separately for three horizons: h=1,2,3 years.

Panel A of Figure 6 shows that the estimated noise increases almost
monotonically in volatility. This relationship holds for all horizons. What is
notable here is that our procedure to estimate  does not target returns or profit
volatility. A conjecture is that high volatility bins correspond to high variance
of forecast residuals, which then leads to larger noise.

We then check whether the model estimated in the previous section is able to
quantitatively predict the cross-sectional variation in noise. Our model predicts
that noise is given by:

h =

(
MSEe

h−�h

κ2 +MSEe
h−�h

)2

σ 2
ν , (15)

where we have used MSEFIRE
h =MSEe

h−�h. Thus, for each bin of volatility,
we can use this formula to predict the amount of noise. We use the κ and σν

estimated in the previous section, �h estimated in the procedure above, and
MSEe

h from the data.
Figure 7 compares this model-predicted noise with the observed noise (that

shown in panel A). For each horizon, we show the value of noise predicted
by our model on the x-axis and the empirically estimated value of noise on
the y-axis. If our model is correct, we should expect all points to lie on the 45-
degree line (shown in black). The results show that our model is not very far off
quantitatively but is statistically rejected at all three horizons. Nevertheless, we
view this quantitative fit as nonmechanical, given that our estimation in Table 5
targeted only aggregate moments at different forecasting horizons to obtain κ

and σν while noise  is directly measured for each bin.
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Figure 7
Empirical versus model-implied noise
This figure plots this same empirical (conditional) noise against the model-implied noise for each bin. To estimate
the model-implied noise, we follow the procedure described in Section 4.4 to generate an estimate of MSEFIRE

h
within each bin, which we convert into an estimate of model implied noise using (14), Proposition 6 and our
estimates of κ and σv from Table 5. Estimates are normalized by the mean squared EPS across the entire sample
for each horizon h. Error bars represent 95% confidence intervals based on a firm-level bootstrap with 200
iterations.

5. Conclusion

We find that subjective forecasts perform better than statistical forecasts at
short horizons but underperform at longer horizons. This decreasing relative
accuracy of subjective forecasts is driven by upward-sloping term structures
of bias and noise, while the information advantage of subjective forecasters
declines with the horizon. Quantitatively, the amount of noise that we estimate
at longer horizons is large—large enough, in fact, to generate a reversal in a
commonly used measure of over- and underreaction.

Existing models, in their current form, lack a feature to match these upward-
sloping term structures of bias and noise. We propose such a mechanism
based on bounded rationality and noisy defaults. This model quantitatively
matches these term structures. The model is parsimonious, as it has three key
parameters: default noise, expectations bias, and the relative weight between
the rational forecast and noise default. This last parameter succeeds in matching
the term structures of both noise and bias, suggesting a connection between the
two. This model predicts that noise should be an increasing function of earnings
volatility, a feature borne out by the data both qualitatively and quantitatively.

Our model provides a reduced-form representation that a more micro-
founded model should admit to match our empirical results. Subsequent work
could enrich the model in this direction.

Appendix A. Derivations and Proofs

In this appendix, we provide derivations of the results stated in the main text. Recall that the indices
t and h have been suppressed but that all variables implicitly vary across years t and forecasting
horizon h.
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Proof. [Proof of Lemma 1] Defining εi =πi −E(πi |Xi,Zi ), the first equation holds trivially. The
conditional mean independence conditions, E(εi |xi ,zi )=0 and E(zi |xi )=0, follow from the law
of iterated expectations. Starting with the second equality, we have

E(zi |xi )=E [E (zi |xi ,Xi ) |xi ]

=E (E(zi |Xi ) |xi ).

From the definition of zi , we have E(zi |Xi )=0. Combined with the previous expression, this
delivers the desired result. The proof for the second equality follows similarly from the law of
iterated expectations.

E(εi |xi ,zi )=E [E (εi |xi ,Xi ,zi ,Zi ) |xi ,zi ]

=E [E (εi |Xi,Zi ) |xi ,zi ],

where the inner expectation equals zero by the definition of εi , which delivers the desired
result. �

Proof. [Proof of Lemma 2] Defining ηi =πi −E(Fjπi |Xi,Zi ), (3) follows trivially. The
conditional mean independence condition, E(ηij |xi ,zi )=0, follows from the law of iterated
expectations.

E(ηij |xi ,zi )=E
[
E
(
ηij |xi ,Xi,zi ,Zi

) |xi ,zi

]
=E

[
E
(
ηij |Xi,Zi

) |xi ,zi

]
,

where the inner expectation equals zero by the definition of ηij , which delivers the desired
result. �

Proof. [Proof of Lemma 3] Using Lemma 1, we have MSEe =E
[
(xi −πi )2

]
=E

(
z2
i

)
+E(ε2

i ).
Using Lemma 2 and the definition of consensus forecasts, we have MSEa =E

[
(Fπi −πi )2

]
=

E
(
b2

i

)
+E(η2

i )+E(ε2
i )+E(ηiεi ). Under the assumption that ηij and εi are uncorrelated, subtracting

the previous expressions for MSEe and MSEa delivers the desired result. �

Proof. [Proof of Proposition 1] To start, note that the first part of Assumption 1 and Lemma 2
imply

Fjπi =gi +αzi +ηij , gi ≡E (Fπi |Xi ).

Taking averages across forecasters to arrive at consensus forecasts, we obtain

Fπi =gi +αzi +ηi , ηi ≡ 1

Ji

∑
j

ηij .

Next, we can derive the noise in consensus forecasts:

E
(
η2

i

)
=E

⎡
⎢⎣
⎛
⎝ 1

Ji

∑
j

ηij

⎞
⎠2
⎤
⎥⎦

=E

⎡
⎢⎣ 1

J 2
i

⎡
⎢⎣E

⎛
⎝∑

j

ηij

⎞
⎠2

|Ji

⎤
⎥⎦
⎤
⎥⎦
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=E

⎡
⎣ 1

J 2
i

E

⎡
⎣∑

j

η2
ij +2

∑
j<k

ηij ηik |Ji

⎤
⎦
⎤
⎦

=E

⎡
⎣ 1

J 2
i

∑
j

E
(
η2

ij |Ji

)⎤⎦

=E

[
1

Ji

var
(
η2

ij

)]
=E

(
1

Ji

)
.

The first equality follows by definition, the second from the law of iterated expectations, the fourth
by the third part of Assumption 1, and the fifth by the fourth part of Assumption 1. We can similarly
derive the bias in consensus forecasts:

E
(
b2

i

)
=E

[
(gi +αzi −xi −zi )

2
]

=E
[
(gi −xi )

2
]

+(1−α)2E
(
z2
i

)
=�+(1−α)2�.

Combining the previous two results with Lemma 3 delivers the desired result. �

Proof. [Proof of Proposition 2] The first part of Assumption 1 and Lemma 2 imply

Fjπi =gi +αzi +ηij , gi ≡E (Fπi |Xi ),

which gives F ∗
ij =αzi +ηij . Taking variances and applying the orthogonality condition from

Lemma 2 gives

var
(
F ∗

ij

)
=var(αzi +ηij )=α2�+,

delivering the second equation in the proposition. The third equation follows from the third part of
Assumption 1:

cov
(
F ∗

ij ,F
∗
ik

)
=cov

(
αzi +ηij ,αzi +ηik

)
=α2�.

Finally, the first equation follows from applying Lemma 1, Lemma 2, and the second part of
Assumption 1:

cov(π∗
i ,F ∗

ij )=cov(zi +εi ,αzi +ηij )=α�.

�

Proof. [Proof of Proposition 3] The first part of Assumption 1 and Lemma 2 imply

F
j
t πit+h =gh

it +αhzh
it +ηh

ij t , gh
it ≡E (Ftπit+h |Xit ).

Then, by definition, F
j

t πit+h =gh
it +αhzh

it . Forecast revisions are then

F
j
t πit+h−F

j

t−1πit+h =F
j

t πit+h−F
j

t−1πit+h +ηh
ij t −ηh

ij t−1.

Taking variances, applying the definition of σ 2
rev and σ 2

rev , and using the assumption that noise is
uncorrelated over time delivers the second equation in the proposition. Forecast errors are equal to

πit+h−F
j
t πit+h =xh

it +zh
it +εh

it −F
j

t πit+h−ηh
ij t .
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The CG coefficient is then

βCG =
cov(πit+h−F

j
t πit+h,F

j
t πit+h−F

j

t−1πit+h)

var(Fj
t πit+h−F

j

t−1πit+h)

=
cov(xh

it +zh
it +εh

it −F
j

t πit+h−ηh
ij t ,F

j

t πit+h−F
j

t−1πit+h +ηh
ij t −ηh

ij t−1)

σ 2
rev

=
cov(xh

it +zh
it +εh

it −F
j

t πit+h,F
j

t πit+h−F
j

t−1πit+h)

σ 2
rev

− h

σ 2
rev

=βCG

(
σ 2

rev −h

σ 2
rev

)
,

where

βCG ≡ cov(xh
it +zh

it +εh
it −F

j

t πit+h,F
j

t πit+h−F
j

t−1πit+h)

σ 2
rev

.

Applying the equation derived for σ 2
rev delivers the result. �

Proof. [Proof of Proposition 4] From Proposition 1, we have

MSEa =�+(1−α)2�+
1

J
+E(ε2

i ).

Under the assumption of joint normality,

Fe+aπi =xi +E (zi |xi ,Fπi )

=xi +
cov(zi ,αzi +ηi )

var(αzi +ηi )
(Fπi −xi )

=xi +β [αz+ηi ], β =
α�

α2�+ 1
J


.

This implies that MSEe+a =E(ε2
i )+(1−βα)2�+β2 1

J
. Subtracting this from MSEa delivers the

result. �

Proof. [Proof of Proposition 5] First note that combining Assumption 2 with the law of iterated
expectations implies

E (πi |Xi )≡xi =
(

1−ρh−1
)
μ+ρh−1xit ,

≡
(

1−ρh−1
)
μ+ρh−1E (EPSit+1 |Xi ).

Therefore, at horizon h, the bias is

�=E
[
(E(EPSt+h|Xi )−E(FtEPSt+h|Xi ))

2
]
,

=E

[(
ρh−1xit −ρh−1E(Ftxit |Xi )

)2
]

=ρ2(h−1)E
[
(xit −E(Ftxit |Xi ))

2
]

=ρ2(h−1)�1.

The noise is

 =var(ηt,h)=var (FtEPSt+h−E (FtEPSt+h|Xi,Zi )),

=var (Ftxt+h−E(Ftxt+h|Xi,Zi ))=ρ2(h−1)var(ηt,1)=ρ2(h−1)1
η.

The result follows because ρ <1 by assumption. �
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