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Abstract

Traditional dynamic programming requires a mathematical model of the

transition function for the state vector. Leveraging reinforcement learning

techniques, we develop a framework to solve dynamic optimization prob-

lems that does not require modeling the data-generating process (DGP) of

exogenous states. Instead, the method samples realizations of these states

directly from the data, allowing the modeler to be “agnostic” about the DGP.

We apply our method to a canonical life cycle consumption-saving problem,

solving the model without specifying the DGP for income. Using income data

from the CPS, we find that the welfare loss from using a standard paramet-

ric income process relative to placing no restrictions on the DGP is small.

We conclude by verifying that our method achieves a global optimum when

given a known DGP and discussing directions for future work.
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1 Introduction

Many economic models formulate the decision problems of economic agents as dynamic

optimization problems (see Stokey et al. 1989 for numerous examples). A dynamic op-

timization problem is characterized by the following ingredients: (i) a state vector that

describes an agent’s decision environment in the current period; (ii) a set of actions that

an agent takes; (iii) a utility function that specifies the agent’s payoff associated with

choosing a given set of actions in a given state; and (iv) a law of motion for the state

vector (i.e., a transition process), which specifies the probability distribution over states in

the next period given the state and actions chosen in the current period.

The traditional approach to solving dynamic optimization problems starts with specify-

ing the law of motion for the exogenous components of the state vector and estimating

its parameters. For example, in the canonical life cycle consumption-saving problem of

Gourinchas and Parker (2002), there are three states: age, assets, and income. The law

of motion for these states is straightforward: age in the next period equals age in the cur-

rent period plus one; assets in the next period are determined by the consumption-saving

choice and the budget constraint; and income in the next period evolves exogenously ac-

cording to a Markov process. The first step in the traditional approach to solving this model

would be to specify a process for income (i.e., the only exogenous state), which is usually

a combination of a deterministic component and a stochastic component that follows a

normal-AR1 process, and estimate the parameters of this process using income data. After

doing so, the traditional approach would then solve this model using standard techniques,

such as value or policy function iteration.

This paper proposes a new methodology for solving dynamic programming problems

that sidesteps the need to specify a law of motion for exogenous states, which we call

Model-Agnostic Dynamic Programming (Agnostic DP, for short). Our motivation for devel-
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oping this approach comes from the growing literature on labor income risk, which shows

that administrative income data exhibit properties (e.g., excess skewness and kurtosis)

that cannot be captured by the traditional income processes (Guvenen et al., 2014, 2021;

Braxton et al., 2021). This evidence thus raises the question of what model of income

processes should be used when solving dynamic consumption-saving problems (Guvenen

et al., 2022).

Motivated by this evidence, the Agnostic DP approach that we develop in this paper

does not require specifying the data-generating process (DGP) for exogenous states. In-

stead, we sample actual realizations of exogenous states (e.g., income in the consumption-

savings example) directly and then use reinforcement learning techniques to find the opti-

mal policy function given the unknown DGP for exogenous states. In particular, we follow

Duarte et al. (2023) and parameterize the policy function using a deep neural network.

We then use a stochastic gradient descent algorithm to solve for the network parameters

that maximize the agent’s expected lifetime utility. Unlike traditional approaches to solv-

ing dynamic programming problems, at no point in this solution process do we need to

specify the law of motion for exogenous states, which allows us to remain “agnostic” about

the data-generating process. The only requirement is that we have enough realizations

of exogenous states from the data in order to train the network (i.e., perform stochastic

gradient descent).

In Section 2, we pose a generic (finite-horizon) dynamic programming problem and de-

scribe our solution method in full generality. An agent in state st takes an action at that

delivers the agent utility u(st, at). We partition the state space into exogenous states kt

(e.g., time, income, or productivity) and endogenous states xt (e.g., assets). We assume

throughout that we have sample paths of exogenous states and a distribution for the initial

value of the endogenous state. Given these preliminaries, we can then define a transition

function of the state, st+1 = m̂(st, at, kt+1), which, given a state, an action, and a future
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realization of exogenous states, returns the state at t + 1. We then show how to parame-

terize the policy function as a neural network, as in Duarte et al. (2022), and describe the

algorithm to solve the model while simultaneously sampling kt+1 from data realizations.

The innovation of this approach is that it does not require specifying a parametric model

for how kt+1 relates to st.

Section 3 applies our method to a canonical life cycle consumption-saving problem. In

this model, an agent lives for T periods and receives an exogenous stream of income. In

each period, the agent makes a consumption-savings decision subject to a borrowing limit

and an exogenous interest rate. To solve the model, we parametrize the policy function us-

ing a deep neural network that the current states as inputs (time, assets, and income) and

outputs consumption. Since the agent (like the modeler) does not know the law of motion

for income (i.e., the only exogenous state in the model), we solve the model by optimizing

the over 1 million parameters of the neural network to maximize expected lifetime utility,

given income realizations that are sampled directly from the Current Population Survey

(CPS) based on individuals’ current income and age.

Having obtained the optimal policy function without specifying the DGP for income, we

then ask the following question: what is the welfare loss from imposing a parametric model

of the income process? To answer this question, we solve the model using the traditional

approach by specifying and estimating a standard parametric income process. We then

compare the expected lifetime utility of an agent that uses this “Classic” policy function,

which has an incorrect representation of the DGP for income, with that of an agent that

uses the Agnostic DP policy function from our method. Surprisingly, we find that these

two values are virtually identical, implying that the cost of assuming a functional form for

income is negligible.

One possibility for this negligible difference is that Agnostic DP does not achieve the

global optimum. We rule out this possibility by comparing our method with the classical
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approach in a model in which the DGP is known. This is a useful exercise because we know

that the classical approach delivers the optimal policy function when the DGP is known.

However, in this case, we find that Agnostic DP is able to replicate the optimal policy

function and achieve the same value function as Classic, which illustrates the reliability of

our solution method.

Although the benefits of being “agnostic” about the data-generating process are small in

our specific application, there are two notable benefits of Agnostic DP relative to the Classic

approach. First, Agnostic DP is much simpler to code. Second, and more importantly, the

Agnostic DP algorithm does not change as the number of states and actions increases,

while the “curse of dimensionality” limits the Classic approach from solving more complex

models. In principle, our Agnostic DP algorithm can handle as many states and actions as

required, but more attention needs to be put into the architecture of the neural network

as the model becomes more complex.

We conclude by discussing plans for future work. One reason why the welfare loss

from assuming a functional form for income would be low is because we are using survey

rather than administrative data; in future work, we plan to implement our approach using

administrative earnings data. Two other directions for future work include generalizing

the method to allow for infinite horizon problems and general equilibrium.

Related literature This paper adds to a nascent literature that develops methods to solve

dynamic stochastic economic models using machine learning techniques (see, e.g., Duarte

et al. 2022; Duarte et al. 2023; Scheidegger and Bilionis 2019; Fernández-Villaverde et al.

2023; Azinovic et al. 2022). Closest to our paper is Duarte et al. (2022), who introduce

the deep reinforcement learning method for solving finite-horizon dynamic stochastic pro-

gramming problems. They use this method to solve a rich model of life cycle portfolio

choice, which includes many ingredients only modeled in isolation in prior work. How-
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ever, their solution method is also “classical” in the sense that they need to specify the DGP

for exogenous states in the model. In contrast, the contribution of our paper is to show

how to leverage their solution technique to be agnostic about this DGP.

This paper is also part of an extensive literature in macroeconomics and household fi-

nance that studies household consumption, savings, and portfolio choices using life cycle

models. The standard approach in this literature is to formulate a dynamic stochastic

model of household behavior over the life cycle and then estimate it in two stages (e.g.,

Gourinchas and Parker, 2002; Catherine, 2022). In the first stage, the parameters that

govern the DGP for exogenous states (e.g., income) are carefully estimated; in the second

stage, any remaining parameters are estimated using indirect inference. In contrast to the

first stage of this approach, our solution approach does not take a stand on the DGP for

exogenous states. Our current application of this approach works with a simpler model

than most of this literature, but in future work, we plan to explore its use in more complex

models.

2 Model-Agnostic Approach

2.1 Framework

2.1.1 Setup

We are interested in solving a canonical dynamic programming as in Stokey et al. (1989)

of the form
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V (s0) = max
{at∈Γ(st)}Tt=0

E0

[
T∑
t=0

u(st, at)

∣∣∣∣s0
]

subject to

st+1 = m(st, at, ϵt).

(1)

Over T periods, the agent takes actions at to maximize utility u(st, at), which depends

on the action taken and the state st. By convention, time t is the first element of st, which

implies that u(st, at) can depend on t in any general form. We partition the state into two

elements, st = (kt, xt), where kt are exogenous states and xt are endogenous states. The

action space is constrained by Γ(st), which defines the set of possible values that at can

take, given st. The law of motion of the state is governed by the function m(st, at, ϵt),

where ϵt is a random variable and makes the problem stochastic.

The goal is to find a policy function at = π(st), which specifies which action to take

given a current state st. Unless this policy can be solved analytically, it is common to

parametrize this policy with some vector parameter θ and approximate π by π̂(st, θ). θ

can be the parameters of an interpolator or the weights in a neural network. We will

consider this later case since neural networks are universal approximators and can handle

many states easily. We now can define Ṽ (s, θ; π̂) as the expected value of using the policy

function π̂(s, θ) as

Ṽ (s0, θ; π̂) =E0

[
T∑
t=0

u(st, π̂(st, θ))

∣∣∣∣s0
]

subject to

st+1 = m(st, π̂(st, θ), ϵt).

(2)

Ṽ (s0, θ; π̂) is the expected value the agent gets when it starts at s0, and follows the policy
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π̂ parametrized by θ. Through the paper, we will take π̂ as given and will be looking for θ.

The optimal choice for π̂ is left for further research, and we will use a multi-layer neural

network with a fixed number of layers. In order to get rid of the expectation term, we

define Ṽ (s0, θ; π̂, {ϵt}Tt=0) as the value of the policy π̂(st, θ) when the initial state is s0 for a

particular shock realization {ϵt}Tt=0,

Ṽ (s0, θ; π̂, {ϵt}Tt=0) =
T∑
t=0

u(st, π̂(st, θ)) subject to st+1 = m(st, π̂(st, θ), ϵt)

Traditional dynamic programming like (1) solve for a function V (s0) that gives the value

for every s0. However, once we are solving a problem for a given policy function, defined

by (π̂, θ), we need a way to compare different policy functions that do not depend on the

initial state s0. Thus, we assume the initial state s0 comes from a distribution F (·), and the

problem we will be solving is to find the parameters θ that maximize

V̄ (π̂) = max
θ

E[Ṽ (s0, θ; π̂)], (3)

where the expectation is taken with respect to s0.

In order to solve (3), we will leverage advances in computer science and machine learn-

ing that allow taking the gradient of Ṽ (s0, θ; π̂) with respect to θ, which we denote by

∇θṼ (s0, θ; π̂). We will replace expectations by simulations of s0 and paths for ϵt. The

central contribution of this paper is how we think about the law of motion m.

2.1.2 Constraining the Action Space

The policy function will be defined by a neural network, which takes as input the state st

and returns some actions at. These actions are constrained by Γ(st), so we need to make

sure that the neural network outputs a feasible action. For this, we have to determine the
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last activation layer according to the constraints of the problem and do a transformation

that depends on the state. Suppose the action space is a scalar, and let ã(st) be the output

of the neural network before we make sure it satisfies at ∈ Γ(st). Then we can be in on of

the following cases.

When the action space is bounded below and above, so at ∈ [b(st), b̄(st)], then the neu-

ral network should output a probability ã(st) ∈ [0, 1] and then transform the action to

a(st) = b(st) + (b̄(st) = b(st))ã. For that, using a sigmoid/logistic activation function is

a good choice. An example of this constraint is consumption, which has to be positive

and is bounded above by some value determined by assets, income, and borrowing con-

straints. The neural network then outputs the share of the total available consumption

that is actually consumed.

Another possibility is that the action space is one-sided bounded like at ≥ b(st). In

such case, using a ReLU activation function, which is bounded below by zero, and setting

a(st) = b(st) + ã(st) would achieve the desired result. Similarly if at ≤ b̄(st), set a(st) =

b̄(st)− ã(st). This constraint is natural in many models of labor supply where labor is not

bounded above but required to be positive.

Finally, if the action is unconstrained and at ∈ R, then any unbounded activation func-

tion suffices to satisfy at ∈ Γ(st). In particular, the linear activation function is a good

choice for that case.

The previous three cases considered a scalar action, but in most models, the action

space is a vector, with components ait. In such case, it is not always the case that we can

constrain ati using the information of the state only because it depends on other actions

atj. A clear example is a life cycle model with endogenous labor supply: how much an

agent is allowed to consume depends on how much labor the agent supplies. We can still

ensure that at ∈ Γ(st), noting that labor constraints are independent of consumption, and
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given labor, we can constrain consumption.

2.1.3 The Law of Motion

The focus of this paper is on the law of motion of the state m. Traditional solution methods

of the problem (1) assume a functional form for m and use it to take first-order conditions

and compute expectations. The proposed methodology does not require such tractability

and instead treats m like a black-box: given a state st and an action at, returns a new state.

ϵt shocks make this mapping stochastic. The agent does not need to know m, but rather it

learns it. All we need to provide is a function that samples st+1 given st and at.

If the modeler knows m, it is an input of the model. This is how most economic models

start: by defining a law of motion of the state that will be estimated/calibrated. We

have developed a Python package nndp, that solves problem (1) given m, u and Γ. The

advantage of using neural networks is that handling more states is straightforward, given

that neural networks are meant to work with many inputs and provide many outputs. We

use automatic differentiation and just-in-time compilation to speed up the convergence

process by leveraging jax.

The most interesting case is when the modeler does not know m or wants to remain

agnostic about the data-generating process. The next section discusses this case.

2.2 Solution Algorithm

The standard way of solving economic models is to (i) use data to estimate a process for

the law of motion of the state and (ii) solve a traditional dynamic problem model given the

estimated law of motion. Our methodology proposes to bypass step (i) and instead solve

the dynamic problem while feeding real data realizations. This way, the modeler remains

agnostic about the data-generating process and does not constrain it at all.
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We have partitioned the state st into exogenous states kt (time, income, interest rates...)

and endogenous states xt (assets). Given s0, we can solve (1) if one is able to get enough

path realizations. We define the value function of following a policy π̂, parametrized by θ,

given a future process for exogenous states {kt}Tt=0 and initial endogenous state x0 as

V̂ (x0, θ, {kt}Tt=0; π̂) =
T∑
t=0

u(st, π̂(st, θ)) subject to

st+1 = m̂(st, π̂(st, θ), kt+1)

s0 = (k0, x0).

(4)

We have not included the constraint at ∈ Γ(st) because we assume that the policy func-

tion π̂(st, θ) already outputs feasible actions, as discussed in the previous section. Note that

(4) is fully deterministic and differentiable with respect to θ. Algorithm 1 shows how we

can find the parameter θ that maximizes (4) using stochastic gradient descent techniques.

Algorithm 1: Agnostic DP
Primitives: reward function u(st, at), transition function m̂(st, at, kt+1), constraints

at ∈ Γ(st), and T .

Data: M paths with xi0 and {kit}Tt=0 indexed by i

Define a neural network architecture π̂ that satisfies at ∈ Γ(st) parameterized by θ;

Initialize the policy function parameters θ0;

for n < N do
Sample m < M paths, and let In be the set of paths selected. Compute the

gradient g(θn) = ∇θ
1
m

∑
i∈In V̂ (si0, θ

n, {kit}Tt=0; π̂);

Update θn+1 = update(θn, g(θn))

end
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3 Application to Life Cycle Consumption-Saving Problem

In this section, we show an application of our method to a standard consumption-savings

problem widely used in economics and household finance. It consists of a household with

some wealth wt that lives for T periods, receives an exogenous stream of income yt, and

can save at a constant interest rate R. The only decision that the household makes is how

much to consume, so at = ct. The value function of an agent at state st = (t, yt, wt) is

V (t, yt, wt) = max
{ct+k}T−1

k=t

Et

[
T−1∑
k=t

βt c
1−γ
t+k

1− γ
+ βT b(wT )

∣∣∣∣yt
]

wt+1 = R (wt + yt − ct)

wt ≥ 0 ct ≥ 0.

(5)

We have added a bequest motive at the time of death T . We adopt De Nardi et al.

(2016) functional form b(wT ) = b0
(wT+b1)1−γ

1−γ
, in part to showcase how utility can be time-

invariant once t is part of the state space. b0 is the intensity of the bequest motive, while b1

determines the curvature of the bequest function and, hence, the extent to which bequests

are luxury goods. In the notation of (1), the reward function is given by

u(st, at) =


βt c

1−γ
t

1−γ
if t < T

βT b0
(wt+b1)1−γ

1−γ
if t = T

.

For simplicity, we assume that wealth has to be positive, allowing for positive borrowing

is straightforward. We partition the state into exogenous states kt = (t, yt) and endoge-

nous states xt = wt. Problem (5) is missing the law of motion of yt, which we have not

specified. Suppose instead that we have a panel where we observe the income realiza-

tions of individuals over their lifetime. In the example provided, we have assumed that
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each household lives exactly for T periods, the appendix describes how the model could

be enriched with (agnostic) random death. With that dataset, we could use Algorithm 1 to

solve for V (t, yt, wt) without making any assumption on the income process yt. Next, we

propose a method to generate that panel drawing from real income realizations.

3.1 Generating a Sampler Dataset

Not making any assumption about the data-generating process of the exogenous state

comes at a cost: we need to observe many paths of income to learn its process to avoid

overfitting. The universe of US tax returns (e.g., Guvenen et al., 2014) would be ideal

for our solution method. Unfortunately, we don’t have access to these data, so we use an

alternative method to generate sample paths from real data realizations.

3.1.1 Income Paths

The CPS is a monthly U.S. labor force survey covering the period 1962 to the present and

gathers information on over 65,000 households. It is the main survey to compute un-

employment statistics, and it also contains information on education, labor force status,

demographics, and other aspects of the U.S. population. The CPS interviews sample mem-

bers eight times. Respondents are interviewed for four consecutive months, are rotated

out for eight months, and then are included in the sample for another four months. In

March, the Annual Social and Economic (ASEC) Supplement provides the usual monthly

labor force data, but in addition, provides supplemental data on work experience, income,

noncash benefits, and migration.

In particular, the ASEC Supplement has information about total income at the individual

level and has a panel structure. In a given March, around 50,000 households are surveyed,

and around 45,000 individuals are followed from year t to t + 1. We consider individuals

aged from 25 to 65 to define an income path of T = 40 years. We deflate income using the
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cpi deflator and round it to the nearest multiple of y = $2, 500, and call this variable yit.

We define t as the number of years since the person turned 25.

In order to obtain a complete path of length T , we sample from realized transitions from

kt to kt+1. We start by sampling an individual aged 25 and we observe its income yi0 and

yi1. Then we sample one observation from all individuals aged 26 with income yi′1 = yi1,

for whom we also observe yi′2. Any sample is done using ASEC weights. Rounding income

to the nearest multiple of y allows for a higher likelihood to find at least one observation

with yi′1 = yi1. With that, we generate a path of length 3 consisting of yi0, yi1 = yi′1, yi′2. We

iterate further by sampling individuals aged 27 and with income yi′′2 = yi′2, to generate an

observation for yi′′3. Once we reach T = 40, we consider we have generated a new income

path. It might be the case that given kt = (t, yt), we are unable to find a match to iterate

forward. If that happens, we start the path from the beginning. This algorithm allows us

to generate as many balanced paths as required to train and evaluate the model. Figure

2 shows 5 paths of income sampled using this procedure. We see some persistence and,

at the same time, big jumps. Our methodology ensures that every pair yit, yit+1 has been

observed in the CPS.

The algorithm generates paths where the transitions yt, yt+1 are data realizations. We

are assuming that only age and income are determinants of future income, a simplification

that is also shared by many other models, like the one we will use in Section 3.4. We can

represent any income process of the form yt+1 = f(t, yt, ϵt), with ϵt being an idiosyncratic

shock with any distribution. The sampling mechanism can be generalized if we condition

the matching on more observable states. We could add gender in the state space kt or in-

dustry group. The obvious caveat of expanding the state space is that it becomes harder to

find matches given the CPS sample size. There are many individuals aged 35 with $50,000

income from whom we observe income at 36 (and thus we can sample one realization)

than women aged 35 with $50,000 income and working in accounting.
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3.1.2 Distribution of Initial Assets

In addition to income paths, we require knowledge of the distribution of initial assets of

individuals at age 25. We obtain those from the Survey of Consumer Finances, which is a

triennial statistical survey of the balance sheet, pension, income, and other demographic

characteristics of families in the United States. We pool all years from 1989 to 2022 and

consider the net worth of observations aged 25-30. After filtering, 21,689 observations

remain. Since we do not consider borrowing in our model, we set any observation with

negative net worth to 0, which is 21% of the sample, and winsorize at 99%. Median assets

are $100,308, and mean assets are $500,286, consistent with a fat tail distribution. Figure

1 shows the distribution of wealth.

3.1.3 Sampling Paths of States

With data on income and initial assets, we can sample initial states by sampling one income

realization of somebody aged 25 from the CPS and the initial assets of somebody aged 25-

30. A caveat of this approach is that we can’t jointly sample income and assets because

they come from different datasets. It is worth noting, though, that the distribution of initial

states s0 is important insofar as we want the neural network to optimize the policy around

states that are more likely to be realized. In this sense, not having a correlation between

income and assets helps to sample from a more dispersed distribution. We visit more states

at the cost of visiting less frequently states that are more representative of an individual at

25.

What is relevant is that now we can generate as many realizations (xi0, {kit}Tt=0) as we

want, which are needed to solve our problem. Given an agent at state sit = (tit, yit, bit), an

action at = ct, we can define the function m(st, at, kt+1), which returns st+1. The modeler

specifies the law of motion for wealth but is agnostic about the process of yt+1, which
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comes from kt+1.

3.2 Solution Method

We parametrize the policy function with a deep neural network π̂(st, θ) that takes a 3-

dimensional input and the parameters we optimize over and returns a 1-dimensional

output bounded from 0 to 1. The output represents the share of cash-on-hand that the

household consumes.1 We build a network with nlayers = 5 hidden layers and each layer

has nnodes = 500 nodes, totalling 1,255,001 parameters. Each internal layer has a tanh

activation function, which generates an output from -1 to 1, and the output activation

function is a sigmoid, which generates a value from 0 to 1, which then is converted to total

consumption. Figure 3 shows a graphical representation of the network.

We train the network with N = 750 epochs, and in each epoch we sample m = 200

paths (xi0, {kit}Tt=0) as described in Section 3.1.3. Sampling more paths allows for a better

calculation of expected values. Gradients are computed using optax, which is a gradient

processing and optimization library for JAX (Bradbury et al. (2018)), and we use Adam

optimization routine (Kingma and Ba (2015)) with a learning rate of 10−4 . Optimization

of hyperparameters and neural network structure is out of the scope of this paper, but

there is room for making the network lighter and, therefore, faster.

3.3 Results

Figure 4 shows the convergence of the value function as the neural network is trained, and

the value function at the test dataset, that is, E[V̂ (s0, θ, {kt}Tt=0; π̂] across realizations of s0

and {kt}Tt=0. Most of the training gains are achieved after 200 epochs, and each epoch has

200 paths, which means that the neural networks need to observe 40,000 paths of income

1With a positive borrowing limit, it would represent the share of available cash-on-hand.
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to learn its process. Figure 4 shows the value function of an agent at age 25 that starts

with 0 assets as a function of income. As expected, is increasing and convex. The function

is not completely smooth because expected values are computed by sampling from income

realizations. Since in the CPS, there are not many observations aged 25 earning more than

$100,000, we suffer from small sample problems at this high-income realizations.

In order to understand the policy function generated by the neural network, Figure 6

shows it of an agent with 0 assets as a function of income and time. The first panel shows

the policy at age 25 (t = 0), and the second panel shows it at age 65 (t = T = 40). The

figure also adds the income realization distribution at those ages since the neural network

optimizes better states that are visited often. As expected, a young agent with low income

behaves as a hand-to-mouth, consuming the majority of it. At age 65, the agent consumes

a larger fraction of their income, although those with income higher than $40,000 save

some as a bequest motive.

Another way to evaluate the policy function is to plot, for an agent aged 25 with median

income ȳ, which is $25,000, as assets increase. Cash on hand is a0 + ȳ and the green line

represents consumption. The point where the solid blue line a1 crosses the 45-degree line

represents the dissaving threshold. Agents with less than $50,000 are closer to the bor-

rowing limit and therefore save for the future, while wealthier agents dissave to increase

present consumption.

3.4 The Cost of a Parameter Model for Income

In this section, we solve the model with standard techniques, which we call it “classical”

method, to assess the cost of imposing a functional form for the income process. The

exercise is to (i) fit an income process for yt, (ii) solve the income-fluctuations process

with classical methods, and (iii) evaluate the policy function with real data realizations.
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That is, we solve a model assuming a particular data-generating process for yt but then we

evaluate it with observational data.

To this end, we assume that log yt is the sum of a deterministic component f(t) that is a

function of age and a disturbance ηit that follows an AR(1) process with persistence ρ.

log yit = f(t) + ηit (6)

ηit = ρηit−1 + ϵit, ϵit ∼ N(0, σ) (7)

As is standard, we fit the deterministic component of income to a polynomial of second

degree

f(t) = δ0 + δ1t+ δ2t
2. (8)

The model is solved using backward iteration, which is robust and ensures that we reach

a global optimum given the convexity of u. We discretize a grid of assets and income using

200 points for each dimension and approximate the normal shocks using Gauss-Hermite

quadrature using 11 points to take expectations.

Table 1 shows the estimated parameter values, and Figure 10 shows the age profile,

which is an inverted U, as expected. We obtain a standard deviation of the income shocks

of 0.71, which is higher than the standard estimation of income processes. This is primarily

due to the inclusion of zeros in the dataset to estimate the AR1. To explain big drops in

income, a high volatility of the idiosyncratic shocks is required.

By solving the model, we obtain πcl
AR1(t, yt, at), which is the policy function computed

using the classic method when the data generating process for income is AR1. We can

compare it with πag
AG(t, yt, at) which is the solution derived in Section 3.3, which is the

policy function of the neural network when it has been trained in agnostic (model-free)
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data.

Figure 8 compares these two policy functions for randomly generated states at t = 0.

Policies are fairly similar except for high values of consumption. At above $30,000, the

agnostic policy consumes more than the policy policy that assumes a functional process

for income. Note that there is no reason to expect both policies to coincide because expec-

tations of future income differ in both cases.

We want to quantify how much we are missing by specifying an income process versus

letting the neural network learn it. Figure 9 shows the value of following each policy when

they are evaluated using data realizations. Both policies derive fairly the same value, with

insignificant differences between one and the other policy. This means that the cost of

assuming a fairly simple income process is negligible.

There are two potential explanations for this unexpected result. One option is that the

income process is indeed represented well by a quadratic polynomial and an AR1 residual.

This is unlikely to be the case given that the deterministic trend regression has an adjusted

R2 of 0.012, while the adjusted R2 of the regression (7) is 0.5. An alternative is that the

income process is mostly driven by the idiosyncratic shocks. In this case, the benefit of

learning the true DGP of income is low, given the high noise-to-info ratio of the process.

3.5 Validation of Agnostic DP Solution Algorithm

In Section 3.3, we were agnostic about the true DGP of the process and, therefore, unsure

if our methodology resulted in an optimal policy. In this section, we test whether Agnostic

DP can achieve the same results as classical methods when trained with data for which we

know its DGP.

To this end, we simulate data from the income process that we fitted in the previous
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section and use it as the input for Algorithm 1. In this case, we do know the optimal value

and policy function up to the interpolation error induced in the classic solution method.

Figure 11 shows how the agnostic method virtually achieves the global optimum in every

state except those with bad realizations. This is normal since these are states that are less

frequently visited by the neural network.

Overall, we can conclude that, at least for this simple model, training a model on agnos-

tic data is as effective as solving a model with traditional methods that assume a functional

form for the exogenous states.

4 Conclusion

In this paper, we propose a new approach for solving dynamic programming problems that

does not require specifying the data-generating process for exogenous states, which we

call Agnostic DP. Instead of using data to estimate a process and then solving the model in

the standard way, we directly feed data realizations into the solution method, sidestepping

the estimation part. Our method is more general because it allows for any underlying data

generating process, at the cost of requiring more observations to train the model and avoid

overfitting.

A clear advantage of using neural networks and gradient-based algorithms is that those

naturally handle many states. We provide a Python package where the solution method is

independent of the problem that we aim to solve. The researcher must specify a reward

function u(st, at), a law of motion m(st, at, kt+1), and a neural network that takes states st

as an input and outputs at, and the code does not change with the dimensionality of the

states or actions.

We apply our methodology to a standard life cycle consumption-saving model. We start
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by proposing a method of sampling income paths using CPS data. For every observation of

a given age and income bin, we sample a future realization of all individuals with the same

age and income bin. While the method is not perfect, we use it for illustrational purposes.

Our contribution is orthogonal to the input data or how it was created. For future work, we

aim to either train the model with real income paths obtained from administrative earnings

data or train a neural network to sample income realizations while being agnostic about

the DGP that generates it.

Within this application, we show how to solve a dynamic programming problem while

being completely agnostic about the data-generating process for exogenous states. In this

application, the model generates reasonable policy functions that are more optimized in

the states that are more likely to be realized. We then discuss the cost of assuming a

functional form for the exogenous state and find that this cost is low for the dataset that

we have generated. And finally, we confirm that our methodology does reach a global

optimum by comparing the solution we obtain with Agnostic DP when we know the DGP,

and the solution obtained with traditional methods, which we know is globally optimum.

This paper is a proof of concept of the power of Agnostic DP, and opens several avenues

of research. A caveat of the solution method proposed is that it is defined for finite horizon

problems. The problem becomes harder to optimize as we increase the horizon, partly due

to discounting. Early in life, mistakes in the policy function when old have very little effect

on total utility. The methodology works for solving partial equilibrium problems. A natural

extension would be to close the model in general equilibrium. It is straightforward to have

aggregate variables as a state variable, but satisfying market clearing conditions is not.
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Tables and Figures
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Figure 1: Wealth distribution at age 25-30 from the Survey of Consumer Finances.
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Figure 2: Synthetic Income realizations from the CPS.
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Figure 3: Neural network used to train the model, with 3 inputs, 1 output and 5 hidden
layers, with 500 nodes each. Hidden layers are activated with tanh, and the output layer
is activated using sigmoid
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Figure 4: Convergence of the training algorithm. In each epoch, we use 200 sample paths
(blue line). The orange dashed line denotes the value of the test data.

Parameter Value
ρ 0.71
σ 0.71
δ0 3.025
δ1 0.035
δ2 -0.000797

Table 1: Calibration of the income process. log yit = δ0 + δ1t+ δ22 + ηit and ηit = ρηit−1 + ϵit
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Figure 5: Value Function as a function of income of an agent at 25 with 0 assets. The
histogram represents the distribution of income at that age.
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Figure 6: Policy function at t=0 (25 year old) and t = 40 (65 year old). The histogram
represents the distribution of income at that age.
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Figure 7: Policy function for an agent at 25 with median income $22,500 as a function of
assets.
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Figure 8: Policy function of the agnostic model and the classic model. Each dot represents
a random initial state at age 25. Note that each policy has been trained with different
income processes so they do not have to coincide.
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Figure 9: Value function comparison. Each dot represents E[V (s0)] for a given s0, com-
puted with the agnostic policy function and the classic policy function. Income paths are
sampled from data realizations.
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Figure 10: Age profile for the process of log yt

28



1.75 1.50 1.25 1.00 0.75 0.50 0.25 0.00
Agnostic

2.00

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

Cl
as

sic

V(s0)

Figure 11: Value function comparison. Each dot represents E[V (s0)] for a given s0, com-
puted with the agnostic policy function and the classic policy function. Income realizations
are sampled from the income process defined in Section 3.4
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