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Model innovation: investors have to learn about two objects

1. talent distribution: determines return on a new stock

2. stock-in-holding distribution: determines return on current stock

Key results: νx = 0.14 > ν = 0.02 rationalizes...
▸ ... stopping to trade after bad returns (& buying Dogecoin?)
▸ ... selling winners faster than losers (i.e. disposition effect)
▸ ... large positions when buying new stock
▸ ... and more!
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Comment #1: why constant gain learning?
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Updating with constant gain learning (for returns & talent):

Ẽtxt+1 = Ẽt−1xt + ν (xt − Ẽt−1xt)

Alternative models of Ẽtxt+1:

bayesian = Ẽt−1xt +Gt (xt − Ẽt−1xt)
diagnostic = Ẽt−1xt + (1 + θ)Gt (xt − Ẽt−1xt)

Gabaix (2014) = (1 −m)Ẽt−1xt +mµx , m < 1 endogenous

Afrouzi et al. (2021) = αxt , α > 1 endogenous

sticky information
w .p. λ= Ẽt−1xt ,

w .p.1−λ= µx

Whether others fit says if it’s about learning dimension or type
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Comment #2: frictionless portfolio choice?
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Myopic portfolio choice a la Merton implies:

∂portfolio sharet
∂Ẽtrt+1

≈ 1

(1 + ν)γσ2 ≈ 1

(1 + νx)γσ2

Giglio et al. (2021) puzzle:

∂portfolio sharet
∂Ẽtrt+1

= ψ 1

γσ2
, ψ = belief-action elasticity ≈ 1

10

See if model can match a low belief-action elasticity
▸ maybe the return & talent learning can generate ψ << 1!
▸ if not, how does ψ << 1 affect quantitative fit of other moments?
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Conclusion

This paper is worth a read!
▸ timely, interesting, & fundamental topic
▸ well-executed with nice connection b/t theory & empirics

Two things to sort out:
▸ whether we do (or don’t) need constant gain learning
▸ determine if model fits with a lower belief-action elasticity

- both require taking the model to the data quantitatively

Broader takeaways:

1. non-FIRE beliefs are crucial for asset pricing facts

- (e.g. Giglio and Kelly 2018; Augenblick and Lazarus 2018; Nagel and
Xu 2019; Bordalo et al. 2019; Lochstoer and Muir 2020; D’Arienzo
2020; De la O and Myers 2021, ...)

2. recognizing complexity of investors’ learning is important

- (e.g. Timmermann 1993; Martin and Nagel 2021)
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